41 Matching Results

Results open in a new window/tab.

TECHNOLOGY NEEDS AND STATUS ON CLOSURE OF DOE RADIOACTIVE WASTE TANK ANCILLARY SYSTEMS (open access)

TECHNOLOGY NEEDS AND STATUS ON CLOSURE OF DOE RADIOACTIVE WASTE TANK ANCILLARY SYSTEMS

This paper summarizes the current state of art of sampling, characterizing, retrieving, transferring and treating the incidental waste and stabilizing the void space in tank ancillary systems and the needs involved with closure of these systems. The overall effort for closing tank and ancillary systems is very large and is in the initial stages of being addressed in a systematic manner. It was recognized in doing this effort, that gaps in both technology and material application for characterization and removal of residual waste and closure of ancillary systems would be identified. Great efficiencies are to be gained by defining the technology need areas early in the closure process and providing recommendations for technical programs to improve the closure strategies. Therefore, this paper will not only summarize the state of closure of ancillary systems but also provide recommendations to address the technology gaps identified in this assessment.
Date: January 21, 2009
Creator: Burns, H; Sharon Marra, S & Christine Langton, C
System: The UNT Digital Library
The Mercury Laser Advances Laser Technology for Power Generation (open access)

The Mercury Laser Advances Laser Technology for Power Generation

The National Ignition Facility (NIF) at Lawrence Livermore Laboratory is on target to demonstrate 'breakeven' - creating as much fusion-energy output as laser-energy input. NIF will compress a tiny sphere of hydrogen isotopes with 1.8 MJ of laser light in a 20-ns pulse, packing the isotopes so tightly that they fuse together, producing helium nuclei and releasing energy in the form of energetic particles. The achievement of breakeven will culminate an enormous effort by thousands of scientists and engineers, not only at Livermore but around the world, during the past several decades. But what about the day after NIF achieves breakeven? NIF is a world-class engineering research facility, but if laser fusion is ever to generate power for civilian consumption, the laser will have to deliver pulses nearly 100,000 times faster than NIF - a rate of perhaps 10 shots per second as opposed to NIF's several shots a day. The Mercury laser (named after the Roman messenger god) is intended to lead the way to a 10-shots-per-second, electrically-efficient, driver laser for commercial laser fusion. While the Mercury laser will generate only a small fraction of the peak power of NIF (1/30,000), Mercury operates at higher average power. The design …
Date: January 21, 2009
Creator: Ebbers, C A; Caird, J & Moses, E
System: The UNT Digital Library
Evaluating Statistical Tests forWithin-Network Classifiers of Relational Data (open access)

Evaluating Statistical Tests forWithin-Network Classifiers of Relational Data

None
Date: September 21, 2009
Creator: Neville, J.; Gallagher, B. & Eliassi-Rad, T.
System: The UNT Digital Library
Lessons Learned in Risk Management on NCSX (open access)

Lessons Learned in Risk Management on NCSX

The National Compact Stellarator Experiment (NCSX) was designed to test physics principles of an innovative stellarator design developed by the Princeton Plasma Physics Laboratory and Oak Ridge National Laboratory. Construction of some of the major components and sub-assemblies was completed, but the estimated cost and schedule for completing the project grew as the technical requirements and risks became better understood, leading to its cancellation in 2008. The project's risks stemmed from its technical challenges, primarily the complex component geometries and tight tolerances that were required. The initial baseline, established in 2004, was supported by a risk management plan and risk-based contingencies, both of which proved to be inadequate. Technical successes were achieved in the construction of challenging components and subassemblies, but cost and schedule growth was experienced. As part of an effort to improve project performance, a new risk management program was devised and implemented in 2007-08. It led to a better understanding of project risks, a sounder basis for contingency estimates, and improved management tools. Although the risks ultimately were unacceptable to the sponsor, valuable lessons in risk management were learned through the experiences with the NCSX project.
Date: July 21, 2009
Creator: G.H. Neilson, C.O. Gruber, J.H. Harris, D.J. Rej, R.T. Simmons, and R.L. Strykowsky
System: The UNT Digital Library
Versatile P(acman) BAC Libraries for Transgenesis Studies in Drosophila melanogaster (open access)

Versatile P(acman) BAC Libraries for Transgenesis Studies in Drosophila melanogaster

We constructed Drosophila melanogaster BAC libraries with 21-kb and 83-kb inserts in the P(acman) system. Clones representing 12-fold coverage and encompassing more than 95percent of annotated genes were mapped onto the reference genome. These clones can be integrated into predetermined attP sites in the genome using Phi C31 integrase to rescue mutations. They can be modified through recombineering, for example to incorporate protein tags and assess expression patterns.
Date: April 21, 2009
Creator: Venken, Koen J.T.; Carlson, Joseph W.; Schulze, Karen L.; Pan, Hongling; He, Yuchun; Spokony, Rebecca et al.
System: The UNT Digital Library
Spinel ferrite nanocrystals embedded inside ZnO: magnetic, electronic andmagneto-transport properties (open access)

Spinel ferrite nanocrystals embedded inside ZnO: magnetic, electronic andmagneto-transport properties

In this paper we show that spinel ferrite nanocrystals (NiFe{sub 2}O{sub 4}, and CoFe{sub 2}O{sub 4}) can be texturally embedded inside a ZnO matrix by ion implantation and post-annealing. The two kinds of ferrites show different magnetic properties, e.g. coercivity and magnetization. Anomalous Hall effect and positive magnetoresistance have been observed. Our study suggests a ferrimagnet/semiconductor hybrid system for potential applications in magneto-electronics. This hybrid system can be tuned by selecting different transition metal ions (from Mn to Zn) to obtain various magnetic and electronic properties.
Date: August 21, 2009
Creator: Zhou, Shengqiang; Potzger, K.; Xu, Qingyu; Kuepper, K.; Talut, G.; Marko, D. et al.
System: The UNT Digital Library
Recent Fast Wave Coupling and Heating Studies on NSTX, with Possible Implications for ITER (open access)

Recent Fast Wave Coupling and Heating Studies on NSTX, with Possible Implications for ITER

The goal of the high harmonic fast wave (HHFW) research on NSTX is to maximize the coupling of RF power to the core of the plasma by minimizing the coupling of RF power to edge loss processes. HHFW core plasma heating efficiency in helium and deuterium L-mode discharges is found to improve markedly on NSTX when the density 2 cm in front of the antenna is reduced below that for the onset of perpendicular wave propagation (nonset ∝ B*k|| 2/ω). In NSTX, the observed RF power losses in the plasma edge are driven in the vicinity of the antenna as opposed to resulting from multi-pass edge damping. PDI surface losses through ion-electron collisions are estimated to be significant. Recent spectroscopic measurements suggest that additional PDI losses could be caused by the loss of energetic edge ions on direct loss orbits and perhaps result in the observed clamping of the edge rotation. Initial deuterium H-mode heating studies reveal that core heating is degraded at lower kφ (- 8 m-1 relative to 13 m-1) as for the Lmode case at elevated edge density. Fast visible camera images clearly indicate that a major edge loss process is occurring from the plasma scrape off …
Date: July 21, 2009
Creator: J.C. Hosea, R.E. Bell, E. Feibush, R.W. Harvey, E.F. Jaeger, B.P LeBlanc, R. Maingi, C.K. Phillips, L. Roquemore, P.M. Ryan, G. Taylor, K. Tritz, E.J. Valeo, J. Wilgen, J.R. Wilson, and the NSTX Team
System: The UNT Digital Library
Conceptual Engineering Method for Attenuating He Ion Interactions on First Wall Components in the Fusion Test Facility (FTF) Employing a Low-Pressure Noble Gas (open access)

Conceptual Engineering Method for Attenuating He Ion Interactions on First Wall Components in the Fusion Test Facility (FTF) Employing a Low-Pressure Noble Gas

It has been shown that post detonation energetic helium ions can drastically reduce the useful life of the (dry) first wall of an IFE reactor due to the accumulation of implanted helium. For the purpose of attenuating energetic helium ions from interacting with first wall components in the Fusion Test Facility (FTF) target chamber, several concepts have been advanced. These include magnetic intervention (MI), deployment of a dynamically moving first wall, use of a sacrificial shroud, designing the target chamber large enough to mitigate the damage caused by He ions on the target chamber wall, and the use of a low pressure noble gas resident in the target chamber during pulse power operations. It is proposed that employing a low-pressure (~ 1 torr equivalent) noble gas in the target chamber will thermalize energetic helium ions prior to interaction with the wall. The principle benefit of this concept is the simplicity of the design and the utilization of (modified) existing technologies for pumping and processing the noble ambient gas. Although the gas load in the system would be increased over other proposed methods, the use of a "gas shield" may provide a cost effective method of greatly extending the first wall …
Date: September 21, 2009
Creator: C.A.Gentile, W.R.Blanchard, T.Kozub, C.Priniski, I.Zatz, S.Obenschain
System: The UNT Digital Library
THE IMPACT OF DISSOLVED SALTS ON PASTES CONTAINING FLY ASH, CEMENT AND SLAG (open access)

THE IMPACT OF DISSOLVED SALTS ON PASTES CONTAINING FLY ASH, CEMENT AND SLAG

The degree of hydration of a mixture of cementitious materials (Class F fly ash, blast furnace slag and portland cement) in highly concentrated alkaline salt solutions is enhanced by the addition of aluminate to the salt solution. This increase in the degree of hydration, as monitored with isothermal calorimetry, leads to higher values of dynamic Young's modulus and compressive strength and lower values of total porosity. This enhancement in performance properties of these cementitious waste forms by increased hydration is beneficial to the retention of the radionuclides that are also present in the salt solution. The aluminate ions in the solution act first to retard the set time of the mix but then enhance the hydration reactions following the induction period. In fact, the aluminate ions increase the degree of hydration by {approx}35% over the degree of hydration for the same mix with a lower aluminate concentration. An increase in the blast furnace slag concentration and a decrease in the water to cementitious materials ratio produced mixes with higher values of Young's modulus and lower values of total porosity. Therefore, these operational factors can be fine tuned to enhance performance properties of cementitious waste form. Empirical models for Young modulus, …
Date: September 21, 2009
Creator: Harbour, J.; Edwards, T. & Williams, V.
System: The UNT Digital Library
Protein Kinase CK2 Regulates Cytoskeletal Reorganization during Ionizing Radiation-Induced Senescence of Human Mesenchymal Stem Cells (open access)

Protein Kinase CK2 Regulates Cytoskeletal Reorganization during Ionizing Radiation-Induced Senescence of Human Mesenchymal Stem Cells

Human mesenchymal stem cells (hMSC) are critical for tissue regeneration. How hMSC respond to genotoxic stresses and potentially contribute to aging and cancer remain underexplored. We demonstrated that ionizing radiation induced cellular senescence of hMSC over a period of 10 days, showing a critical transition between day 3 and day 6. This was confirmed by senescence-associated beta-galactosidase (SA-{beta}-gal) staining, protein expression profiles of key cell cycle regulators (retinoblastoma (Rb) protein, p53, p21{sup waf1/Cip1}, and p16{sup INK4A}), and senescence-associated secretory phenotypes (SASPs) (IL-8, IL-12, GRO, and MDC). We observed dramatic cytoskeletal reorganization of hMSC through reduction of myosin-10, redistribution of myosin-9, and secretion of profilin-1. Using a SILAC-based phosphoproteomics method, we detected significant reduction of myosin-9 phosphorylation at Ser1943, coinciding with its redistribution. Importantly, through treatment with cell permeable inhibitors (4,5,6,7-tetrabromo-1H-benzotriazole (TBB) and 2-dimethylamino-4,5,6,7-tetrabromo-1H-benzimidazole (DMAT)), and gene knockdown using RNA interference, we identified CK2, a kinase responsible for myosin-9 phosphorylation at Ser1943, as a key factor contributing to the radiation-induced senescence of hMSC. We showed that individual knockdown of CK2 catalytic subunits CK2{alpha} and CK2{alpha}{prime} induced hMSC senescence. However, only knockdown of CK2{alpha} resulted in morphological phenotypes resembling those of radiation-induced senescence. These results suggest that CK2{alpha} and CK2{alpha}{prime} play differential …
Date: August 21, 2009
Creator: Wang, Daojing & Jang, Deok-Jin
System: The UNT Digital Library
New Accessory for Cleaning the Inside of the Machine Tool Cavity (open access)

New Accessory for Cleaning the Inside of the Machine Tool Cavity

The best way to extend the life of a metalworking fluid (MWF) is to make sure the machine tool and MWF delivery system are properly cleaned at least once per year. The dilemma the MWF manager is faced with is: How does one clean the machine tool and the MWF system on a large machine tool with an enclosure in a timely manner without impacting production schedules? Remember the walls and roof of the machine enclosure are coated with a film of dried contaminated MWF that must also be removed. If not removed, the deposits on these surfaces can recontaminate the fresh charge of MWF. I have found a product that with this revised procedure helps to shorten the machine tool down time involved with machine cleaning. (1) Discuss with your MWF supplier if they have a machine cleaning product that can be used with your current water based MWF during normal machining operations. Most MWF manufacturers have a machine cleaner that can be used at a lower concentration (1-2% vs. 5%) and can be used while still making production parts for a short period of time (usually 24-48 hours). (2) Make sure this machine cleaner is compatible with the …
Date: April 21, 2009
Creator: Lazarus, Lloyd
System: The UNT Digital Library
Europium-doped barium bromide iodide (open access)

Europium-doped barium bromide iodide

Single crystals of Ba0.96Eu0.04BrI (barium europium bromide iodide) were grown by the Bridgman technique. The title compound adopts the ordered PbCl2 structure [Braekken (1932). Z. Kristallogr. 83, 222-282]. All atoms occupy the fourfold special positions (4c, site symmetry m) of the space group Pnma with a statistical distribution of Ba and Eu. They lie on the mirror planes, perpendicular to the b axis at y = +-0.25. Each cation is coordinated by nine anions in a tricapped trigonal prismatic arrangement.
Date: October 21, 2009
Creator: Gundiah, Gautam; Hanrahan, Stephen M.; Hollander, Fredrick J. & Bourret-Courchesne, Edith D.
System: The UNT Digital Library
Development of Li+ alumino-silicate ion source (open access)

Development of Li+ alumino-silicate ion source

To uniformly heat targets to electron-volt temperatures for the study of warm dense matter, one strategy is to deposit most of the ion energy at the peak of energy loss (dE/dx) with a low (E< 5 MeV) kinetic energy beam and a thin target[1]. Lower mass ions have a peak dE/dx at a lower kinetic energy. To this end, a small lithium (Li+) alumino-silicate source has been fabricated, and its emission limit has been measured. These surface ionization sources are heated to 1000-1150 C where they preferentially emit singly ionized alkali ions. Alumino-silicates sources of K+ and Cs+ have been used extensively in beam experiments, but there are additional challenges for the preparation of high-quality Li+ sources: There are tighter tolerances in preparing and sintering the alumino-silicate to the substrate to produce an emitter that gives uniform ion emission, sufficient current density and low beam emittance. We report on recent measurements ofhigh ( up to 35 mA/cm2) current density from a Li+ source. Ion species identification of possible contaminants is being verified with a Wien (E x B) filter, and via time-of-flight.
Date: April 21, 2009
Creator: Roy, P.K.; Seidl, P.A.; Waldron, W.; Greenway, W.; Lidia, S.; Anders, A. et al.
System: The UNT Digital Library
Invariability of Central Metabolic Flux Distribution in Shewanella oneidensis MR-1 Under Environmental or Genetic Perturbations (open access)

Invariability of Central Metabolic Flux Distribution in Shewanella oneidensis MR-1 Under Environmental or Genetic Perturbations

An environmentally important bacterium with versatile respiration, Shewanella oneidensis MR-1, displayed significantly different growth rates under three culture conditions: minimal medium (doubling time {approx} 3 hrs), salt stressed minimal medium (doubling time {approx} 6 hrs), and minimal medium with amino acid supplementation (doubling time {approx}1.5 hrs). {sup 13}C-based metabolic flux analysis indicated that fluxes of central metabolic reactions remained relatively constant under the three growth conditions, which is in stark contrast to the reported significant changes in the transcript and metabolite profiles under various growth conditions. Furthermore, ten transposon mutants of S. oneidensis MR-1 were randomly chosen from a transposon library and their flux distributions through central metabolic pathways were revealed to be identical, even though such mutational processes altered the secondary metabolism, for example, glycine and C1 (5,10-Me-THF) metabolism.
Date: April 21, 2009
Creator: Tang, Yinjie; Martin, Hector Garcia; Deutschbauer, Adam; Feng, Xueyang; Huang, Rick; Llora, Xavier et al.
System: The UNT Digital Library
Recent Fast Wave Coupling and Heating Studies on NSTX, with Possible Implications for ITER (open access)

Recent Fast Wave Coupling and Heating Studies on NSTX, with Possible Implications for ITER

The goal of the high harmonic fast wave (HHFW) research on NSTX is to maximize the coupling of RF power to the core of the plasma by minimizing the coupling of RF power to edge loss processes. HHFW core plasma heating efficiency in helium and deuterium L-mode discharges is found to improve markedly on NSTX when the density 2 cm in front of the antenna is reduced below that for the onset of perpendicular wave propagation (nonset ∝ B*k|| 2/ω). In NSTX, the observed RF power losses in the plasma edge are driven in the vicinity of the antenna as opposed to resulting from multi-pass edge damping. PDI surface losses through ion-electron collisions are estimated to be significant. Recent spectroscopic measurements suggest that additional PDI losses could be caused by the loss of energetic edge ions on direct loss orbits and perhaps result in the observed clamping of the edge rotation. Initial deuterium H-mode heating studies reveal that core heating is degraded at lower kφ (- 8 m-1 relative to 13 m-1) as for the Lmode case at elevated edge density. Fast visible camera images clearly indicate that a major edge loss process is occurring from the plasma scrape off …
Date: July 21, 2009
Creator: J.C. Hosea, R.E. Bell, E. Feibush, R.W. Harvey, E.F. Jaeger, B.P LeBlanc, R. Maingi, C.K. Phillips, L. Roquemore, P.M. Ryan, G. Taylor, K. Tritz, E.J. Valeo, J. Wilgen, J.R. Wilson, and the NSTX Team
System: The UNT Digital Library
High Power, High Voltage FETs in Linear Applications: A User's Perspective (open access)

High Power, High Voltage FETs in Linear Applications: A User's Perspective

The specifications of the current crop of highpower, high-voltage field-effect transistors (FETs) can lure a designer into employing them in high-voltage DC equipment. Devices with extremely low on-resistance and very high power ratings are available from several manufacturers. However, our experience shows that high-voltage, linear operation of these devices at near-continuous duty can present difficult reliability challenges at stress levels well-below their published specifications. This paper chronicles the design evolution of a 600 volt, 8 ampere shunt regulator for use with megawatt-class radio transmitters, and presents a final design that has met its reliability criteria.
Date: September 21, 2009
Creator: Greenough, N.; Fredd, E. & DePasquale, S.
System: The UNT Digital Library
Highly Selective Synthesis of Catalytically Active Monodisperse Rhodium Nanocubes (open access)

Highly Selective Synthesis of Catalytically Active Monodisperse Rhodium Nanocubes

Synthesis of monodisperse and shape-controlled colloidal inorganic nanocrystals (NCs) is of increasing scientific interest and technological significance. Recently, shape control of Pt, Pd, Ag, Au, and Rh NCs has been obtained by tuning growth kinetics in various solution-phase approaches, including modified polyol methods, seeded growth by polyol reduction, thermolysis of organometallics, and micelle techniques. Control of reduction kinetics of the noble metal precursors and regulation of the relative growth rates of low-index planes (i.e. {l_brace}100{r_brace} and {l_brace}111{r_brace}) via selective adsorption of selected chemical species are two keys for achieving shape modification of noble metal NCs. One application for noble metal NCs of well-defined shape is in understanding how NC faceting (determines which crystallographic planes are exposed) affects catalytic performance. Rh NCs are used in many catalytic reactions, including hydrogenation, hydroformylation, hydrocarbonylation, and combustion reactions. Shape manipulation of Rh NCs may be important in understanding how faceting on the nanoscale affects catalytic properties, but such control is challenging and there are fewer reports on the shape control of Rh NCs compared to other noble metals. Xia and coworkers obtained Rh multipods exhibiting interesting surface plasmonic properties by a polyol approach. The Somorjai and Tilley groups synthesized crystalline Rh multipods, cubes, horns …
Date: February 21, 2009
Creator: Zhang, Y.; Grass, M. E.; Kuhn, J. N.; Tao, F.; Habas, S. E.; Huang, W. et al.
System: The UNT Digital Library
Investigation of a Gas Jet-Produced Hollow Plasma Wakefield Accelerator (open access)

Investigation of a Gas Jet-Produced Hollow Plasma Wakefield Accelerator

The effect of ion motion and the need for practical positron propagation in a plasma wakefield accelerator (PWFA) have incited interest in hollow plasma channels. These channels are typically assumed to be cylindrically symmetric; however, a different geometry might be easier to achieve. The introduction of an obstruction into the outlet of a high Mach number gas jet can produce two parallel slabs of gas separated by a density depression. Here, there is a detailed simulation study of the density depression created in such a system. This investigation reveals that the density depression is insufficient at the desired plasma density. However, insights from the simulations suggest another avenue for the creation of the hollow slab geometry.
Date: May 21, 2009
Creator: Kirby, N; Blumenfeld, I.; Hogan, M. J.; Siemann, R. H.; Walz, D. R.; Davidson, A. W. et al.
System: The UNT Digital Library
EFFECTS OF GAMMA RADIATION ON ELECTROCHEMICAL PROPERTIES OF IONIC LIQUIDS (open access)

EFFECTS OF GAMMA RADIATION ON ELECTROCHEMICAL PROPERTIES OF IONIC LIQUIDS

The electrochemical properties of ionic liquids (ILs) make them attractive for possible replacement of inorganic salts in high temperature molten salt electrochemical processing of nuclear fuel. To be a feasible replacement solvent, ILs need to be stable in moderate and high doses of radiation without adverse chemical and physical effects. Here, we exposed seven different ILs to a 1.2 MGy dose of gamma radiation to investigate their physical and chemical properties as they related to radiological stability. The azolium-based ILs experienced the greatest change in appearance, but these ILs were chemically more stable to gamma radiation than some of the other classes of ILs tested, due to the presence of aromatic electrons in the azolium ring. All the ILs exhibited a decrease in their conductivity and electrochemical window (at least 1.1 V), both of which could affect the utility of ILs in electrochemical processing. The concentration of the irradiation decomposition products was less than 3 mole %, with no impurities detectable using NMR techniques.
Date: April 21, 2009
Creator: Visser, A; Nicholas Bridges, N; Thad Adams, T; John Mickalonis, J & Mark02 Williamson, M
System: The UNT Digital Library
Major Successes of Theory-and-Experiment-Combined Studies in Surface Chemistry and Heterogeneous Catalysis. (open access)

Major Successes of Theory-and-Experiment-Combined Studies in Surface Chemistry and Heterogeneous Catalysis.

Experimental discoveries followed by theoretical interpretations that pave the way of further advances by experimentalists is a developing pattern in modern surface chemistry and catalysis. The revolution of modern surface science started with the development of surface-sensitive techniques such as LEED, XPS, AES, ISS and SIMS, in which the close collaboration between experimentalists and theorists led to the quantitative determination of surface structure and composition. The experimental discovery of the chemical activity of surface defects and the trends in the reactivity of transitional metals followed by the explanations from the theoretical studies led to the molecular level understanding of active sites in catalysis. The molecular level knowledge, in turn, provided a guide for experiments to search for new generation of catalysts. These and many other examples of successes in experiment-and-theory-combined studies demonstrate the importance of the collaboration between experimentalists and theorists in the development of modern surface science.
Date: November 21, 2009
Creator: Somorjai, Gabor A. & Li, Yimin
System: The UNT Digital Library
The Strength of Single Crystal Copper under Uniaxial Shock Compression at Mbar pressures (open access)

The Strength of Single Crystal Copper under Uniaxial Shock Compression at Mbar pressures

In situ x-ray diffraction has been used to measure the shear strain (and thus strength) of single crystal copper shocked to Mbar pressures along the [001] and [111] axes. These direct shear strain measurements indicate shear strengths at these ultra-high strain rates (of order 10{sup 9} s{sup -1}) of a few GPa, which are both broadly in agreement with the extrapolation of lower strain-rate data and with non-equilibrium molecular dynamics simulations.
Date: May 21, 2009
Creator: Murphy, W; Higginbotham, A; Kimminau, G; Barbrel, B; Bringa, E; Hawreliak, J et al.
System: The UNT Digital Library
Over Voltage in a Multi-sectioned Solenoid during a Quenching (open access)

Over Voltage in a Multi-sectioned Solenoid during a Quenching

Accurate analysis of over voltage in the superconducting solenoid during a quench is one of the bases for quench protection system design. Classical quench simulation methods can only give rough estimation of the over voltage within a magnet coil. In this paper, for multi-sectioned superconducting solenoid, based on the classical assumption of ellipsoidal normal zone, three-dimension al temperature results are mapped to the one-dimension of the wire, the temperature distribution along the wire and the resistances of each turn are obtained. The coil is treated as circuit comprised of turn resistances, turn self and mutual inductances. The turn resistive voltage, turn inductive voltage, and turn resultant voltage along the wire are calculated. As a result, maximum internal voltages, the layer-to-layer voltages and the turn-to-turn voltages are better estimated. Utilizing this method, the over voltage of a small solenoid and a large solenoid during quenching have been studied. The result shows that this method can well improve the over voltage estimate, especially when the coil is larger.
Date: June 21, 2009
Creator: Guo, Xinglong; Wang, Li; Pan, Heng; Wu, Hong; Liu, Xiaokun; Chen, Anbin et al.
System: The UNT Digital Library
Nuclear Recoil Cross Sections from Time-dependent Studies of Two-Photon Double Ionization of Helium (open access)

Nuclear Recoil Cross Sections from Time-dependent Studies of Two-Photon Double Ionization of Helium

We examine the sensitivity of nuclear recoil cross sections produced by two-photon double ionization of helium to the underlying triple differential cross sections (TDCS) used in their computation. We show that this sensitivity is greatest in the energy region just below the threshold for sequential double ionization. Accurate TDCS, extracted from non-perturbative solutions of the time-dependent Schroedinger equation, are used here in new computations of the nuclear recoil cross section.
Date: December 21, 2009
Creator: Horner, Daniel A.; Rescigno, Thomas N. & McCurdy, C. William
System: The UNT Digital Library
Spectroscopic signatures of proton transfer dynamics in the water dimer cation (open access)

Spectroscopic signatures of proton transfer dynamics in the water dimer cation

Using full dimensional EOM-IP-CCSD/aug-cc-pVTZ potential energy surfaces, the photoelectron spectrum, vibrational structure, and ionization dynamics of the water dimer radical cation, (H2O)+2, were computed. We also report an experimental photoelectron spectrum which is derived from photoionization efficiency measurements and compares favorably with the theoretical spectrum. The vibrational structure is also compared with the recent experimental work of Gardenier et al. [J. Phys. Chem. A 113, 4772 (2009)] and the recent theoretical calculations by Cheng et al. [J. Phys. Chem. A 113 13779 (2009)]. A reduced dimensionality nuclear Hamiltonian was used to compute the ionization dynamics for both the ground state and first excited state of the cation. The dynamics show markedly different behavior and spectroscopic signatures depending on which state of the cation is accessed by the ionization. Ionization to the ground-state cation surface induces a hydrogen transfer which is complete within 50 femtoseconds, whereas ionization to the first excited state results in a much slower process.
Date: December 21, 2009
Creator: Kamarchik, Eugene; Kostko, Oleg; Bowman, Joel M.; Ahmed, Musahid & Krylov, Anna I.
System: The UNT Digital Library