40 Matching Results

Results open in a new window/tab.

Limits on the Superconducting Order Parameter in NdFeAsO_{1-x}F_y from Scanning SQUID Microscopy (open access)

Limits on the Superconducting Order Parameter in NdFeAsO_{1-x}F_y from Scanning SQUID Microscopy

Identifying the symmetry of the superconducting order parameter in the recently-discovered ferrooxypnictide family of superconductors, RFeAsO{sub 1-x}F{sub y}, where R is a rare earth, is a high priority. Many of the proposed order parameters have internal {pi} phase shifts, like the d-wave order found in the cuprates, which would result in direction-dependent phase shifts in tunneling. In dense polycrystalline samples, these phase shifts in turn would result in spontaneous orbital currents and magnetization in the superconducting state. We perform scanning SQUID microscopy on a dense polycrystalline sample of NdFeAsO{sub 0.94}F{sub 0.06} with T{sub c} = 48K and find no such spontaneous currents, ruling out many of the proposed order parameters.
Date: January 8, 2009
Creator: Hicks, Clifford W.; Lippman, Thomas M.; Huber, Martin E.; Ren, Zhi-An; Yang, Jie; Zhao, Zhong-Xian et al.
System: The UNT Digital Library
Scanning SQUID microscopy on polycrystalline SmFeAsO_{0.85} and NdFeAsO_{0.94}F_{0.06} (open access)

Scanning SQUID microscopy on polycrystalline SmFeAsO_{0.85} and NdFeAsO_{0.94}F_{0.06}

The order parameter of the recently-discovered ferric arsenide family of superconductors remains uncertain. Some early experiments on polycrystalline samples suggested line nodes in the order parameter, however later experiments on single crystals have strongly supported fully-gapped superconductivity. An absence of nodes does not rule out unconventional order: {pi} phase shifts between the separate Fermi sheets and time-reversal symmetry-breaking components in the order parameter remain possibilities. One test for unconventional order is scanning magnetic microscopy on well-coupled polycrystalline samples: d- or p-wave order would result in orbital frustration, leading to spontaneous currents and magnetization in the superconducting state. We have performed scanning SQUID microscopy on SmFeAsO{sub 0.85} and NdFeAsO{sub 0.94}F{sub 0.06}, and in neither material do we find spontaneous orbital currents, ruling out p- or d-wave order.
Date: January 8, 2009
Creator: Hicks, Clifford W.; Lippman, Thomas M.; Moler, Kathryn A.; Huber, Martin E.; Ren, Zhi-An & Zhao, Zhong-Xian
System: The UNT Digital Library
Results from the B Factories (open access)

Results from the B Factories

These proceedings are based on lectures given at the Helmholtz International Summer School Heavy Quark Physics at the Bogoliubov Laboratory of Theoretical Physics, Dubna, Russia, during August 2008. I review the current status of CP violation in B meson decays from the B factories. These results can be used, along with measurements of the sides of the Unitarity Triangle, to test the CKM mechanism. In addition I discuss experimental studies of B decays to final states with 'spin-one' particles.
Date: January 8, 2009
Creator: Bevan, A. & /Queen Mary, U. of London
System: The UNT Digital Library
Composite Analysis of Llw Disposal Facilities at the U. S. Department of Energy's Savannah River Site (open access)

Composite Analysis of Llw Disposal Facilities at the U. S. Department of Energy's Savannah River Site

Composite Analyses (CA's) are required per DOE Order 435.1 [1], in order to provide a reasonable expectation that DOE low-level waste (LLW) disposal, high-level waste tank closure, and transuranic (TRU) waste disposal in combination with Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), Resource Conservation and Recovery Act (RCRA), and deactivation and decommissioning (D&D) actions, will not result in the need for future remedial actions in order to ensure radiological protection of the public and environment. This Order requires that an accounting of all sources of DOE man-made radionuclides and DOE enhanced natural radionuclides that are projected to remain on the site after all DOE site operations have ceased. This CA updates the previous CA that was developed in 1997. As part of this CA, an inventory of expected radionuclide residuals was conducted, exposure pathways were screened and a model was developed such that a dose to the MOP at the selected points of exposure might be evaluated.
Date: January 8, 2009
Creator: Hiergesell, R. A.; Phifer, M. A. & Smith, F. G.
System: The UNT Digital Library
THE THICKNESS DEPENDENCE OF OXYGEN PERMEABILITY IN SOL-GEL DERIVED CGO-COFE2O4 THIN FILMS ON POROUS CERAMIC SUBSTRATES: A SPUTTERED BLOCKING LAYER FOR THICKNESS CONTROL (open access)

THE THICKNESS DEPENDENCE OF OXYGEN PERMEABILITY IN SOL-GEL DERIVED CGO-COFE2O4 THIN FILMS ON POROUS CERAMIC SUBSTRATES: A SPUTTERED BLOCKING LAYER FOR THICKNESS CONTROL

Mixed conductive oxides are a topic of interest for applications in oxygen separation membranes as well as use in producing hydrogen fuel through the partial oxidation of methane. The oxygen flux through the membrane is governed both by the oxygen ionic conductivity as well as the material's electronic conductivity; composite membranes like Ce{sub 0.8}Gd{sub 0.2}O{sub 2-{delta}} (CGO)-CoFe{sub 2}O{sub 4} (CFO) use gadolinium doped ceria oxides as the ionic conducting material combined with cobalt iron spinel which serves as the electronic conductor. In this study we employ {approx} 50 nm sputtered CeO{sub 2} layers on the surface of porous CGO ceramic substrates which serve as solution 'blocking' layers during the thin film fabrication process facilitating the control of film thickness. Films with thickness of {approx} 2 and 4 microns were prepared by depositing 40 and 95 separate sol-gel layers respectively. Oxygen flux measurements indicated that the permeation increased with decreasing membrane thickness; thin film membrane with thickness on the micron level showed flux values an order of magnitude greater (0.03 {micro}mol/cm{sup 2} s) at 800 C as compared to 1mm thick bulk ceramic membranes (0.003 {micro}mol/cm{sup 2}).
Date: January 8, 2009
Creator: Brinkman, K
System: The UNT Digital Library
Versatile assembly of p-carboxylatocalix[4]arene-O-alkyl ethers (open access)

Versatile assembly of p-carboxylatocalix[4]arene-O-alkyl ethers

Crystallisation of lower-rim tetra-O-alkylated p-carboxylatocalix[4]arenes from pyridine results in the formation of both bi-layer and pillar type supramolecular motifs. Full alkylation at the calixarene lower rim has significant influence over the supramolecular self-assembly motif, including preclusion of pyridine guest molecules from the calixarene cavity in the solid state.
Date: July 8, 2009
Creator: Kennedy, Stuart; Teat, Simon J. & Dalgarno, Scott J.
System: The UNT Digital Library
Advances in NLTE Modeling for Integrated Simulations (open access)

Advances in NLTE Modeling for Integrated Simulations

The last few years have seen significant progress in constructing the atomic models required for non-local thermodynamic equilibrium (NLTE) simulations. Along with this has come an increased understanding of the requirements for accurately modeling the ionization balance, energy content and radiative properties of different elements for a wide range of densities and temperatures. Much of this progress is the result of a series of workshops dedicated to comparing the results from different codes and computational approaches applied to a series of test problems. The results of these workshops emphasized the importance of atomic model completeness, especially in doubly excited states and autoionization transitions, to calculating ionization balance, and the importance of accurate, detailed atomic data to producing reliable spectra. We describe a simple screened-hydrogenic model that calculates NLTE ionization balance with surprising accuracy, at a low enough computational cost for routine use in radiation-hydrodynamics codes. The model incorporates term splitting, {Delta}n = 0 transitions, and approximate UTA widths for spectral calculations, with results comparable to those of much more detailed codes. Simulations done with this model have been increasingly successful at matching experimental data for laser-driven systems and hohlraums. Accurate and efficient atomic models are just one requirement for integrated …
Date: July 8, 2009
Creator: Scott, H A & Hansen, S B
System: The UNT Digital Library
Observation of relativistic effects in collective Thomson scattering (open access)

Observation of relativistic effects in collective Thomson scattering

We observe relativistic modifications to the Thomson scattering spectrum in a traditionally classical regime: v{sub osc}/c = eE{sub 0}/cm{omega}{sub 0} << 1 and T{sub e} < 1 keV. The modifications result from scattering off electron-plasma fluctuations with relativistic phase velocities. Normalized phase velocities v/c between 0.03 and 0.12 have been achieved in a N{sub 2} gas-jet plasma by varying the plasma density from 3 x 10{sup 18} cm{sup -3} to 7 x 10{sup 19} cm{sup -3} and electron temperature between 85 eV and 700 eV. For these conditions, the complete temporally resolved Thomson scattering spectrum including the electron and ion features has been measured. A fully relativistic treatment of the Thomson scattering form factor has been developed and shows excellent agreement with the experimental data.
Date: October 8, 2009
Creator: Ross, J S; Glenzer, S H; Palastro, J P; Pollock, B B; Price, D; Divol, L et al.
System: The UNT Digital Library
Ni spin switching induced by magnetic frustration in FeMn/Ni/Cu(001) (open access)

Ni spin switching induced by magnetic frustration in FeMn/Ni/Cu(001)

Epitaxially grown FeMn/Ni/Cu(001) films are investigated by Photoemission Electron Microscopy and Magneto-Optic Kerr Effect. We find that as the FeMn overlayer changes from paramagnetic to antiferromagnetic state, it could switch the ferromagnetic Ni spin direction from out-of-plane to in-plane direction of the film. This phenomenon reveals a new mechanism of creating magnetic anisotropy and is attributed to the out-of-plane spin frustration at the FeMn-Ni interface.
Date: March 8, 2009
Creator: Wu, J.; Choi, J.; Scholl, A.; Doran, A.; Arenholz, E.; Hwang, Chanyong et al.
System: The UNT Digital Library
Crystallization Process of Protein Rv0731c from Mycobacterium Tuberculosis for a Successful Atomic Resolution Crystal Structure at 1.2 Angstrom (open access)

Crystallization Process of Protein Rv0731c from Mycobacterium Tuberculosis for a Successful Atomic Resolution Crystal Structure at 1.2 Angstrom

Proteins are bio-macromolecules consisting of basic 20 amino acids and have distinct three-dimensional folds. They are essential parts of organisms and participate in every process within cells. Proteins are crucial for human life, and each protein within the body has a specific function, such as antibodies, contractile proteins, enzymes, hormonal proteins, structural proteins, storage proteins and transport proteins. Determining three-dimensional structure of a protein can help researchers discover the remarkable protein folding, binding site, conformation and etc, in order to understand well of protein interaction and aid for possible drug design. The research on protein structure by X-ray protein crystallography carried by Li-Wei Hung's research group in the Physical Bioscience Division at Lawrence Berkeley National Laboratory (LBNL) is focusing on protein crystallography. The research in this lab is in the process of from crystallizing the proteins to determining the three dimensional crystal structures of proteins. Most protein targets are selected from Mycobacterium Tuberculosis. TB (Tuberculosis) is a possible fatal infectious disease. By studying TB target protein can help discover antituberculer drugs, and find treatment for TB. The high-throughput mode of crystallization, crystal harvesting, crystal screening and data collection are applied to the research pipeline (Figure 1). The X-ray diffraction data …
Date: June 8, 2009
Creator: Zhu, Liang Cong
System: The UNT Digital Library
Science & Technology Workshop Tank Waste Retrieval Technology Activities (open access)

Science & Technology Workshop Tank Waste Retrieval Technology Activities

None
Date: June 8, 2009
Creator: Saunders, S. A.
System: The UNT Digital Library
Sensory Transduction in Microorganisms 2008 Gordon Research Conference (January 2008) (open access)

Sensory Transduction in Microorganisms 2008 Gordon Research Conference (January 2008)

Research into the mechanisms involved in the sensing and responses of microorganisms to changes in their environments is currently very active in a large number of laboratories worldwide. An increasingly wide range of prokaryotic and eukaryotic species are being studied with regard to their sensing of diverse chemical and physical stimuli, including nutrients, toxins, intercellular signaling molecules, redox indicators, light, pressure, magnetic fields, and surface contact, leading to adaptive responses affecting motile behavior, gene expression and/or development. The ease of manipulation of microorganisms has facilitated application of a broad range of techniques that have provided comprehensive descriptions of cellular behavior and its underlying molecular mechanisms. Systems and their molecular components have been probed at levels ranging from the whole organism down to atomic resolution using behavioral analyses; electrophysiology; genetics; molecular biology; biochemical and biophysical characterization; structural biology; single molecule, fluorescence and cryo-electron microscopy; computational modeling; bioinformatics and genomic analyses. Several model systems such as bacterial chemotaxis and motility, fruiting body formation in Myxococcus xanthus, and motility and development in Dictyostelium discoideum have traditionally been a focus of this meeting. By providing a basis for assessment of similarities and differences in mechanisms, understanding of these pathways has advanced the study of …
Date: April 8, 2009
Creator: Stock, Ann M.
System: The UNT Digital Library
ONGOING INVESTIGATION OF THE EFFECT THAT DRUGSTORE BEETLES HAVE ON CELOTEX ASSEMBLIES FOUND WITHIN RADIOACTIVE MATERIAL PACKAGINGS (open access)

ONGOING INVESTIGATION OF THE EFFECT THAT DRUGSTORE BEETLES HAVE ON CELOTEX ASSEMBLIES FOUND WITHIN RADIOACTIVE MATERIAL PACKAGINGS

During normal operations at the Department of Energy's Hanford Site in Hanford, WA, drugstore beetles were found within the fiberboard subassemblies of two 9975 Shipping Packages. The Department of Energy's Packaging Certification Program (EM-60) directed a thorough investigation to determine if the drugstore beetles were causing damage that would be detrimental to the safety performance of the Celotex. The Savannah River National Laboratory is continuing to conduct the investigation with entomological expertise being provided by Clemson University. The outcome from the investigation conducted over the previous year was that no discernible damage had been caused by the drugstore beetles. One of the two packages has been essentially untouched over the past year and has only been opened to visually inspect for additional damage. This paper will provide details and results of the ongoing investigation of that package.
Date: June 8, 2009
Creator: Loftin, B.
System: The UNT Digital Library
Phase Transition Signature Results from PHENIX (open access)

Phase Transition Signature Results from PHENIX

The PHENIX experiment has conducted searches for the QCD critical point with measurements of multiplicity fluctuations, transverse momentum fluctuations, event-by-event kaon-to-pion ratios, elliptic flow, and correlations. Measurements have been made in several collision systems as a function of centrality and transverse momentum. The results do not show significant evidence of critical behavior in the collision systems and energies studied, although several interesting features are discussed.
Date: June 8, 2009
Creator: Mitchell, J.e. & Collaboration, PHENIX
System: The UNT Digital Library
HANFORDS HISTORIC B REACTOR PRESENTATION TO PNNL OPEN WORLD FORUM 03/20/2009 (open access)

HANFORDS HISTORIC B REACTOR PRESENTATION TO PNNL OPEN WORLD FORUM 03/20/2009

None
Date: April 8, 2009
Creator: MS, GERBER
System: The UNT Digital Library
Potential luminosity improvement for low-energy RHIC operation with electron cooling (open access)

Potential luminosity improvement for low-energy RHIC operation with electron cooling

There is a strong interest in heavy-ion RHIC collisions in the energy range below the present RHIC injection energy, which is termed 'low-energy' operation. These collisions will help to answer one of the key questions in the field of QCD about the existence and location of a critical point on the QCD phase diagram. However, luminosity projections are relatively low for the lowest energy points of interest. Luminosity improvement can be provided with RHIC electron cooling at low beam energies. This report summarizes the expected luminosity improvements with electron cooling and various limitations.
Date: June 8, 2009
Creator: Fedotov,A.
System: The UNT Digital Library
Probing the Conformational Distributions of Sub-Persistence Length DNA (open access)

Probing the Conformational Distributions of Sub-Persistence Length DNA

We have measured the bending elasticity of short double-stranded DNA (dsDNA) chains through small-angle X-ray scattering from solutions of dsDNA-linked dimers of gold nanoparticles. This method, which does not require exertion of external forces or binding to a substrate, reports on the equilibrium distribution of bending fluctuations, not just an average value (as in ensemble FRET) or an extreme value (as in cyclization), and in principle provides a more robust data set for assessing the suitability of theoretical models. Our experimental results for dsDNA comprising 42-94 basepairs (bp) are consistent with a simple worm-like chain model of dsDNA elasticity, whose behavior we have determined from Monte Carlo simulations that explicitly represent nanoparticles and their alkane tethers. A persistence length of 50 nm (150 bp) gave a favorable comparison, consistent with the results of single-molecule force-extension experiments on much longer dsDNA chains, but in contrast to recent suggestions of enhanced flexibility at these length scales.
Date: June 8, 2009
Creator: Mastroianni, Alexander; Sivak, David; Geissler, Phillip & Alivisatos, Paul
System: The UNT Digital Library
STRUCTURAL ANNOTATION OF EM IMAGES BY GRAPH CUT (open access)

STRUCTURAL ANNOTATION OF EM IMAGES BY GRAPH CUT

Biological images have the potential to reveal complex signatures that may not be amenable to morphological modeling in terms of shape, location, texture, and color. An effective analytical method is to characterize the composition of a specimen based on user-defined patterns of texture and contrast formation. However, such a simple requirement demands an improved model for stability and robustness. Here, an interactive computational model is introduced for learning patterns of interest by example. The learned patterns bound an active contour model in which the traditional gradient descent optimization is replaced by the more efficient optimization of the graph cut methods. First, the energy function is defined according to the curve evolution. Next, a graph is constructed with weighted edges on the energy function and is optimized with the graph cut algorithm. As a result, the method combines the advantages of the level set method and graph cut algorithm, i.e.,"topological" invariance and computational efficiency. The technique is extended to the multi-phase segmentation problem; the method is validated on synthetic images and then applied to specimens imaged by transmission electron microscopy(TEM).
Date: May 8, 2009
Creator: Chang, Hang; Auer, Manfred & Parvin, Bahram
System: The UNT Digital Library
Thermo-Mechanical Response of a TRISO Fuel Particle in a Fusion/Fission Engine for Incineration of Weapons Grade Plutonium (open access)

Thermo-Mechanical Response of a TRISO Fuel Particle in a Fusion/Fission Engine for Incineration of Weapons Grade Plutonium

The Laser Inertial Fusion-based (LIFE) engine is an advanced energy concept under development at Lawrence Livermore National Laboratory (LLNL). LIFE engine could be used to drive a subcritical fission blanket with fertile or fissile fuel. Current LIFE engine designs envisages fuel in pebble bed form with TRISO (tristructural isotropic) particles embedded in a graphite matrix, and pebbles flowing in molten salt Flibe (2LiF+BeF{sub 2}) coolant at T {approx} 700C. Weapons-grade plutonium (WGPu) fuel is an attractive option for LIFE engine involving the achievement of high fractional burnups in a short lifetime frame. However, WGPu LIFE engine operating conditions of high neutron fast fluence, high radiation damage, and high Helium and Hydrogen production pose severe challenges for typical TRISO particles. The thermo-mechanical fuel performance code HUPPCO (High burn-Up fuel Pebble Performance COde) currently under development accounts for spatial and time dependence of the material elastic properties, temperature, and irradiation swelling and creep mechanisms. In this work, some aspects of the thermo-mechanical response of TRISO particles used for incineration of weapons grade fuel in LIFE engine are analyzed. Preliminary results show the importance of developing reliable high-fidelity models of the performance of these new fuel designs and the need of new experimental …
Date: December 8, 2009
Creator: Caro, M.; DeMange, P.; Marian, J. & Caro, A.
System: The UNT Digital Library
Characterization and device performance of (AgCu)(InGa)Se2 absorber layers (open access)

Characterization and device performance of (AgCu)(InGa)Se2 absorber layers

The study of (AgCu)(InGa)Se2 absorber layers is of interest in that Ag-chalcopyrites exhibit both wider bandgaps and lower melting points than their Cu counterparts. (AgCu)(InGa)Se2 absorber layers were deposited over the composition range 0 < Ag/(Ag+Cu) < 1 and 0.3 < Ga/(In+Ga) < 1.0 using a variety of elemental co-evaporation processes. Films were found to be singlephase over the entire composition range, in contrast to prior studies. Devices with Ga content 0.3 < Ga/(In+Ga) <0.5 tolerated Ag incorporation up to Ag/(Ag+Cu) = 0.5 without appreciable performance loss. Ag-containing films with Ga/(In+Ga) = 0.8 showed improved device characteristics over Cu-only control samples, in particular a 30-40% increase in short-circuit current. An absorber layer with composition Ag/(Ag+Cu) = 0.75 and Ga/(In+Ga) = 0.8 yielded a device with VOC = 890 mV, JSC = 20.5mA/cm2, fill factor = 71.3%, and η = 13.0%.
Date: June 8, 2009
Creator: Hanket, Gregory; Boyle, Jonathan H. & Shafarman, William N.
System: The UNT Digital Library
Condensates in Quantum Chromodynamics and the Cosmological Constant (open access)

Condensates in Quantum Chromodynamics and the Cosmological Constant

Casher and Susskind have noted that in the light-front description, spontaneous chiral symmetry breaking in quantum chromodynamics (QCD) is a property of hadronic wavefunctions and not of the vacuum. Here we show from several physical perspectives that, because of color confinement, quark and gluon QCD condensates are associated with the internal dynamics of hadrons. We discuss condensates using condensed matter analogues, the AdS/CFT correspondence, and the Bethe-Salpeter/Dyson-Schwinger approach for bound states. Our analysis is in agreement with the Casher and Susskind model and the explicit demonstration of 'in-hadron' condensates by Roberts et al., using the Bethe-Salpeter/Dyson-Schwinger formalism for QCD bound states. These results imply that QCD condensates give zero contribution to the cosmological constant, since all of the gravitational effects of the in-hadron condensates are already included in the normal contribution from hadron masses.
Date: May 8, 2009
Creator: Brodsky, Stanley J. & Shrock, Robert
System: The UNT Digital Library
Sheet Beam Klystron Instability Analysis (open access)

Sheet Beam Klystron Instability Analysis

Using the principle of energy balance we develop a 2D theory for calculating growth rates of instability in a two-cavity model of a sheet beam klystron. An important ingredient is a TE-like mode in the gap that also gives a longitudinal kick to the beam. When compared with a self-consistent particle-in-cell calculation, with sheet beam klystron-type parameters, agreement is quite good up to half the design current, 65 A; at full current, however, other, current-dependent effects come in and the results deviate significantly.
Date: May 8, 2009
Creator: Bane, K. L. F.; Jensen, A.; Li, Z.; Stupakov, G. & Adolphsen, C.
System: The UNT Digital Library
A high-performance electron beam ion source (open access)

A high-performance electron beam ion source

At Brookhaven National Laboratory, a high current Electron Beam Ion Source (EBIS) has been developed as part of a new preinjector that is under construction to replace the Tandem Van de Graaffs as the heavy ion preinjector for the RHIC and NASA experimental programs. This preinjector will produce milliampere-level currents of essentially any ion species, with q/A {ge} 1/6, in short pulses, for injection into the Booster synchrotron. In order to produce the required intensities, this EBIS uses a 10A electron gun, and an electron collector designed to handle 300 kW of pulsed electron beam power. The EBIS trap region is 1.5 m long, inside a 5T, 2m long, 8-inch bore superconducting solenoid. The source is designed to switch ion species on a pulse-to-pulse basis, at a 5 Hz repetition rate. Singly-charged ions of the appropriate species, produced external to the EBIS, are injected into the trap and confined until the desired charge state is reached via stepwise ionization by the electron beam. Ions are then extracted and matched into an RFQ, followed by a short IH Linac, for acceleration to 2 MeV/A, prior to injection into the Booster synchrotron. An overview of the preinjector is presented, along with experimental …
Date: June 8, 2009
Creator: Alessi,J.; Beebe, E.; Bellavia, S.; Gould, O.; Kponou, A.; Lambiase, R. et al.
System: The UNT Digital Library
CRYSTALLIZATION IN MULTICOMPONENT GLASSES (open access)

CRYSTALLIZATION IN MULTICOMPONENT GLASSES

In glass processing situations involving glass crystallization, various crystalline forms nucleate, grow, and dissolve, typically in a nonuniform temperature field of molten glass subjected to convection. Nuclear waste glasses are remarkable examples of multicomponent vitrified mixtures involving partial crystallization. In the glass melter, crystals form and dissolve during batch-to-glass conversion, melter processing, and product cooling. Crystals often agglomerate and sink, and they may settle at the melter bottom. Within the body of cooling glass, multiple phases crystallize in a non-uniform time-dependent temperature field. Self-organizing periodic distribution (the Liesegnang effect) is common. Various crystallization phenomena that occur in glass making are reviewed.
Date: October 8, 2009
Creator: AA, KRUGER & PR, HRMA
System: The UNT Digital Library