Resource Type

Three-Dimensional Aberration-Corrected Scanning Transmission Electron Microscopy for Biology (open access)

Three-Dimensional Aberration-Corrected Scanning Transmission Electron Microscopy for Biology

Recent instrumental developments have enabled greatly improved resolution of scanning transmission electron microscopes (STEM) through aberration correction. An additional and previously unanticipated advantage of aberration correction is the greatly improved depth sensitivity that has led to the reconstruction of a three-dimensional (3D) image from a focal series. In this chapter the potential of aberration-corrected 3D STEM to provide major improvements in the imaging capabilities for biological samples will be discussed. This chapter contains a brief overview ofthe various high-resolution 3D imaging techniques, a historical perspective of the development of STEM, first estimates of the dose-limited axial and lateral resolution on biological samples and initial experiments on stained thin sections.
Date: January 1, 2007
Creator: De Jonge, Niels; Sougrat, Rachid; Pennycook, Stephen J; Peckys, Diana B & Lupini, Andrew R
System: The UNT Digital Library
Opportunities for Saving Energy and Improving Air Quality in Urban Heat Islands (open access)

Opportunities for Saving Energy and Improving Air Quality in Urban Heat Islands

World energy use is the main contributor to atmospheric CO2. In 2002, about 7.0 giga metric tons of carbon (GtC) were emitted internationally by combustion of gas, liquid, and solid fuels (CDIAC, 2006), 2 to 5 times the amount contributed by deforestation (Brown et al., 1988). The share of atmospheric carbon emissions for the United States from fossil fuel combustion was 1.6 GtC. Increasing use of fossil fuel and deforestation together have raised atmospheric CO{sub 2} concentration some 25% over the last 150 years. According to global climate models and preliminary measurements, these changes in the composition of the atmosphere have already begun raising the Earth's average temperature. If current energy trends continue, these changes could drastically alter the Earth's temperature, with unknown but potentially catastrophic physical and political consequences. During the last three decades, increased energy awareness has led to conservation efforts and leveling of energy consumption in the industrialized countries. An important byproduct of this reduced energy use is the lowering of CO{sub 2} emissions. Of all electricity generated in the United States, about one-sixth is used to air-condition buildings. The air-conditioning use is about 400 tera-watt-hours (TWh), equivalent to about 80 million metric tons of carbon (MtC) …
Date: July 1, 2007
Creator: Akbari, Hashem
System: The UNT Digital Library
Macroscopic Modeling of Polymer-Electrolyte Membranes (open access)

Macroscopic Modeling of Polymer-Electrolyte Membranes

In this chapter, the various approaches for the macroscopic modeling of transport phenomena in polymer-electrolyte membranes are discussed. This includes general background and modeling methodologies, as well as exploration of the governing equations and some membrane-related topic of interest.
Date: April 1, 2007
Creator: Weber, A.Z. & Newman, J.
System: The UNT Digital Library
Deformation Behavior of Nanoporous Metals (open access)

Deformation Behavior of Nanoporous Metals

Nanoporous open-cell foams are a rapidly growing class of high-porosity materials (porosity {ge} 70%). The research in this field is driven by the desire to create functional materials with unique physical, chemical and mechanical properties where the material properties emerge from both morphology and the material itself. An example is the development of nanoporous metallic materials for photonic and plasmonic applications which has recently attracted much interest. The general strategy is to take advantage of various size effects to introduce novel properties. These size effects arise from confinement of the material by pores and ligaments, and can range from electromagnetic resonances to length scale effects in plasticity. In this chapter we will focus on the mechanical properties of low density nanoporous metals and how these properties are affected by length scale effects and bonding characteristics. A thorough understanding of the mechanical behavior will open the door to further improve and fine-tune the mechanical properties of these sometimes very delicate materials, and thus will be crucial for integrating nanoporous metals into products. Cellular solids with pore sizes above 1 micron have been the subject of intense research for many years, and various scaling relations describing the mechanical properties have been developed.[4] …
Date: November 28, 2007
Creator: Biener, J.; Hodge, A. M. & Hamza, A. V.
System: The UNT Digital Library
Chapter 3: Evaluating the impacts of carbonaceous aerosols on clouds and climate (open access)

Chapter 3: Evaluating the impacts of carbonaceous aerosols on clouds and climate

Any attempt to reconcile observed surface temperature changes within the last 150 years to changes simulated by climate models that include various atmospheric forcings is sensitive to the changes attributed to aerosols and aerosol-cloud-climate interactions, which are the main contributors that may well balance the positive forcings associated with greenhouse gases, absorbing aerosols, ozone related changes, etc. These aerosol effects on climate, from various modeling studies discussed in Menon (2004), range from +0.8 to -2.4 W m{sup -2}, with an implied value of -1.0 W m{sup -2} (range from -0.5 to -4.5 W m{sup -2}) for the aerosol indirect effects. Quantifying the contribution of aerosols and aerosol-cloud interactions remain complicated for several reasons some of which are related to aerosol distributions and some to the processes used to represent their effects on clouds. Aerosol effects on low lying marine stratocumulus clouds that cover much of the Earth's surface (about 70%) have been the focus of most of prior aerosol-cloud interaction effect simulations. Since cumulus clouds (shallow and deep convective) are short lived and cover about 15 to 20% of the Earth's surface, they are not usually considered as radiatively important. However, the large amount of latent heat released from convective …
Date: September 3, 2007
Creator: Menon, Surabi & Del Genio, Anthony D.
System: The UNT Digital Library
Pestoides F, and Atypical Yersinia pestis Strain from the Former Soviet Union (open access)

Pestoides F, and Atypical Yersinia pestis Strain from the Former Soviet Union

Unlike the classical Yersinia pestis strains, members of an atypical group of Y. pestis from Central Asia, denominated Y. pestis subspecies caucasica (also known as one of several pestoides types), are distinguished by a number of characteristics including their ability to ferment rhamnose and melibiose, their lacking the small plasmid encoding the plasminogen activator (pla) and pesticin, and their exceptionally large variants of the virulence plasmid pMT (encoding murine toxin and capsular antigen). We have obtained the entire genome sequence of Y. pestis Pestoides F, an isolate from the former Soviet Union that has enabled us to carryout a comprehensive genome-wide comparison of this organism's genomic content against the six published sequences of Y. pestis and their Y. pseudotuberculosis ancestor. Based on classical glycerol fermentation (+ve) and nitrate reduction (+ve) Y. pestis Pestoides F is an isolate that belongs to the biovar antiqua. This strain is unusual in other characteristics such as the fact that it carries a non-consensus V antigen (lcrV) sequence, and that unlike other Pla{sup -} strains, Pestoides F retains virulence by the parenteral and aerosol routes. The chromosome of Pestoides F is 4,517,345 bp in size comprising some 3,936 predicted coding sequences, while its pCD and …
Date: January 5, 2007
Creator: Garcia, E.; Worsham, P.; Bearden, S.; Malfatti, S.; Lang, D.; Larimer, F. et al.
System: The UNT Digital Library
Promoting electricity from renewable energy sources -- lessons learned from the EU, U.S. and Japan (open access)

Promoting electricity from renewable energy sources -- lessons learned from the EU, U.S. and Japan

The promotion of electricity generated from Renewable Energy Sources (RES) has recently gained high priority in the energy policy strategies of many countries in response to concerns about global climate change, energy security and other reasons. This chapter compares and contrasts the experience of a number of countries in Europe, states in the US as well as Japan in promoting RES, identifying what appear to be the most successful policy measures. Clearly, a wide range of policy instruments have been tried and are in place in different parts of the world to promote renewable energy technologies. The design and performance of these schemes varies from place to place, requiring further research to determine their effectiveness in delivering the desired results. The main conclusions that can be drawn from the present analysis are: (1) Generally speaking, promotional schemes that are properly designed within a stable framework and offer long-term investment continuity produce better results. Credibility and continuity reduce risks thus leading to lower profit requirements by investors. (2) Despite their significant growth in absolute terms in a number of key markets, the near-term prognosis for renewables is one of modest success if measured in terms of the percentage of the total …
Date: June 1, 2007
Creator: Haas, Reinhard; Meyer, Niels I.; Held, Anne; Finon, Dominique; Lorenzoni, Arturo; Wiser, Ryan et al.
System: The UNT Digital Library
Structural Genomics of Minimal Organisms: Pipeline and Results (open access)

Structural Genomics of Minimal Organisms: Pipeline and Results

The initial objective of the Berkeley Structural Genomics Center was to obtain a near complete three-dimensional (3D) structural information of all soluble proteins of two minimal organisms, closely related pathogens Mycoplasma genitalium and M. pneumoniae. The former has fewer than 500 genes and the latter has fewer than 700 genes. A semiautomated structural genomics pipeline was set up from target selection, cloning, expression, purification, and ultimately structural determination. At the time of this writing, structural information of more than 93percent of all soluble proteins of M. genitalium is avail able. This chapter summarizes the approaches taken by the authors' center.
Date: September 14, 2007
Creator: Kim, Sung-Hou; Shin, Dong-Hae; Kim, Rosalind; Adams, Paul & Chandonia, John-Marc
System: The UNT Digital Library
The Use Of Scanning Probe Microscopy To Investigate Crystal-Fluid Interfaces (open access)

The Use Of Scanning Probe Microscopy To Investigate Crystal-Fluid Interfaces

Over the past decade there has been a natural drive to extend the investigation of dynamic surfaces in fluid environments to higher resolution characterization tools. Various aspects of solution crystal growth have been directly visualized for the first time. These include island nucleation and growth using transmission electron microscopy and scanning tunneling microscopy; elemental step motion using scanning probe microscopy; and the time evolution of interfacial atomic structure using various diffraction techniques. In this lecture we will discuss the use of one such in situ method, scanning probe microscopy, as a means of measuring surface dynamics during crystal growth and dissolution. We will cover both practical aspects of imaging such as environmental control, fluid flow, and electrochemical manipulation, as well as the types of physical measurements that can be made. Measurements such as step motion, critical lengths, nucleation density, and step fluctuations, will be put in context of the information they provide about mechanistic processes at surfaces using examples from metal and mineral crystal growth.
Date: April 16, 2007
Creator: Orme, C. A. & Giocondi, J. L.
System: The UNT Digital Library
Couplings between changes in the climate system and biogeochemistry (open access)

Couplings between changes in the climate system and biogeochemistry

The Earth's climate is determined by a number of complex connected physical, chemical and biological processes occurring in the atmosphere, land and ocean. The radiative properties of the atmosphere, a major controlling factor of the Earth's climate, are strongly affected by the biophysical state of the Earth's surface and by the atmospheric abundance of a variety of trace constituents. These constituents include long-lived greenhouse gases (LLGHGs) such as carbon dioxide (CO{sub 2}), methane (CH{sub 4}) and nitrous oxide (N{sub 2}O), as well as other radiatively active constituents such as ozone and different types of aerosol particles. The composition of the atmosphere is determined by processes such as natural and anthropogenic emissions of gases and aerosols, transport at a variety of scales, chemical and microphysical transformations, wet scavenging and surface uptake by the land and terrestrial ecosystems, and by the ocean and its ecosystems. These processes and, more generally the rates of biogeochemical cycling, are affected by climate change, and involve interactions between and within the different components of the Earth system. These interactions are generally nonlinear and may produce negative or positive feedbacks to the climate system. An important aspect of climate research is to identify potential feedbacks and assess …
Date: October 1, 2007
Creator: Menon, Surabi; Denman, Kenneth L.; Brasseur , Guy; Chidthaisong, Amnat; Ciais, Philippe; Cox, Peter M. et al.
System: The UNT Digital Library
Pulsed Power for Solid-State Lasers (open access)

Pulsed Power for Solid-State Lasers

Beginning in the early 1970s, a number of research and development efforts were undertaken at U.S. National Laboratories with a goal of developing high power lasers whose characteristics were suitable for investigating the feasibility of laser-driven fusion. A number of different laser systems were developed and tested at ever larger scale in pursuit of the optimum driver for laser fusion experiments. Each of these systems had associated with it a unique pulsed power option. A considerable amount of original and innovative engineering was carried out in support of these options. Ultimately, the Solid-state Laser approach was selected as the optimum driver for the application. Following this, the Laser Program at the Lawrence Livermore National Laboratory and the University of Rochester undertook aggressive efforts directed at developing the technology. In particular, at Lawrence Livermore National Laboratory, a series of laser systems beginning with the Cyclops laser and culminating in the present with the National Ignition Facility were developed and tested. As a result, a large amount of design information for solid-state laser pulsed power systems has been documented. Some of it is in the form of published papers, but most of it is buried in internal memoranda, engineering reports and LLNL …
Date: April 19, 2007
Creator: Gagnon, W.; Albrecht, G.; Trenholme, J. & Newton, M.
System: The UNT Digital Library
Chapter 8: Selective Stoichiometric and Catalytic Reactivity in the Confines of a Chiral Supramolecular Assembly (open access)

Chapter 8: Selective Stoichiometric and Catalytic Reactivity in the Confines of a Chiral Supramolecular Assembly

Nature uses enzymes to activate otherwise unreactive compounds in remarkable ways. For example, DNases are capable of hydrolyzing phosphate diester bonds in DNA within seconds,[1-3]--a reaction with an estimated half-life of 200 million years without an enzyme.[4] The fundamental features of enzyme catalysis have been much discussed over the last sixty years in an effort to explain the dramatic rate increases and high selectivities of enzymes. As early as 1946, Linus Pauling suggested that enzymes must preferentially recognize and stabilize the transition state over the ground state of a substrate.[5] Despite the intense study of enzymatic selectivity and ability to catalyze chemical reactions, the entire nature of enzyme-based catalysis is still poorly understood. For example, Houk and co-workers recently reported a survey of binding affinities in a wide variety of enzyme-ligand, enzyme-transition-state, and synthetic host-guest complexes and found that the average binding affinities were insufficient to generate many of the rate accelerations observed in biological systems.[6] Therefore, transition-state stabilization cannot be the sole contributor to the high reactivity and selectivity of enzymes, but rather, other forces must contribute to the activation of substrate molecules. Inspired by the efficiency and selectivity of Nature, synthetic chemists have admired the ability of enzymes …
Date: September 27, 2007
Creator: University of California, Berkeley; Laboratory, Lawrence Berkeley National; Raymond, Kenneth; Pluth, Michael D.; Bergman, Robert G. & Raymond, Kenneth N.
System: The UNT Digital Library
Industry (open access)

Industry

This chapter addresses past, ongoing, and short (to 2010) and medium-term (to 2030) future actions that can be taken to mitigate GHG emissions from the manufacturing and process industries. Globally, and in most countries, CO{sub 2} accounts for more than 90% of CO{sub 2}-eq GHG emissions from the industrial sector (Price et al., 2006; US EPA, 2006b). These CO{sub 2} emissions arise from three sources: (1) the use of fossil fuels for energy, either directly by industry for heat and power generation or indirectly in the generation of purchased electricity and steam; (2) non-energy uses of fossil fuels in chemical processing and metal smelting; and (3) non-fossil fuel sources, for example cement and lime manufacture. Industrial processes also emit other GHGs, e.g.: (1) Nitrous oxide (N{sub 2}O) is emitted as a byproduct of adipic acid, nitric acid and caprolactam production; (2) HFC-23 is emitted as a byproduct of HCFC-22 production, a refrigerant, and also used in fluoroplastics manufacture; (3) Perfluorocarbons (PFCs) are emitted as byproducts of aluminium smelting and in semiconductor manufacture; (4) Sulphur hexafluoride (SF{sub 6}) is emitted in the manufacture, use and, decommissioning of gas insulated electrical switchgear, during the production of flat screen panels and semiconductors, from …
Date: December 1, 2007
Creator: Bernstein, Lenny; Roy, Joyashree; Delhotal, K. Casey; Harnisch, Jochen; Matsuhashi, Ryuji; Price, Lynn et al.
System: The UNT Digital Library
Biomolecular Modification of Inorganic Crystal Growth (open access)

Biomolecular Modification of Inorganic Crystal Growth

The fascinating shapes and hierarchical designs of biomineralized structures are an inspiration to materials scientists because of the potential they suggest for biomolecular control over materials synthesis. Conversely, the failure to prevent or limit tissue mineralization in the vascular, skeletal, and urinary systems is a common source of disease. Understanding the mechanisms by which organisms direct or limit crystallization has long been a central challenge to the biomineralization community. One prevailing view is that mineral-associated macromolecules are responsible for either inhibiting crystallization or initiating and stabilizing non-equilibrium crystal polymorphs and morphologies through interactions between anionic moieties and cations in solution or at mineralizing surfaces. In particular, biomolecules that present carboxyl groups to the growing crystal have been implicated as primary modulators of growth. Here we review the results from a combination of in situ atomic force microscopy (AFM) and molecular modeling (MM) studies to investigate the effect of specific interactions between carboxylate-rich biomolecules and atomic steps on crystal surfaces during the growth of carbonates, oxalates and phosphates of calcium. Specifically, we how the growth kinetics and morphology depend on the concentration of additives that include citrate, simple amino acids, synthetic Asp-rich polypeptides, and naturally occurring Asp-rich proteins found in both …
Date: April 27, 2007
Creator: De Yoreo, J. J.
System: The UNT Digital Library
Modeling Water Management in Polymer-Electrolyte Fuel Cells (open access)

Modeling Water Management in Polymer-Electrolyte Fuel Cells

Fuel cells may become the energy-delivery devices of the 21st century with realization of a carbon-neutral energy economy. Although there are many types of fuel cells, polymerelectrolyte fuel cells (PEFCs) are receiving the most attention for automotive and small stationary applications. In a PEFC, hydrogen and oxygen are combined electrochemically to produce water, electricity, and waste heat. During the operation of a PEFC, many interrelated and complex phenomena occur. These processes include mass and heat transfer, electrochemical reactions, and ionic and electronic transport. Most of these processes occur in the through-plane direction in what we term the PEFC sandwich as shown in Figure 1. This sandwich comprises multiple layers including diffusion media that can be composite structures containing a macroporous gas-diffusion layer (GDL) and microporous layer (MPL), catalyst layers (CLs), flow fields or bipolar plates, and a membrane. During operation fuel is fed into the anode flow field, moves through the diffusion medium, and reacts electrochemically at the anode CL to form hydrogen ions and electrons. The oxidant, usually oxygen in air, is fed into the cathode flow field, moves through the diffusion medium, and is electrochemically reduced at the cathode CL by combination with the generated protons and electrons. …
Date: September 7, 2007
Creator: Department of Chemical Engineering, University of California, Berkeley; Weber, Adam; Weber, Adam Z.; Balliet, Ryan; Gunterman, Haluna P. & Newman, John
System: The UNT Digital Library
Carbon Capture and Storage (open access)

Carbon Capture and Storage

Carbon capture and sequestration (CCS) is the long-term isolation of carbon dioxide from the atmosphere through physical, chemical, biological, or engineered processes. This includes a range of approaches including soil carbon sequestration (e.g., through no-till farming), terrestrial biomass sequestration (e.g., through planting forests), direct ocean injection of CO{sub 2} either onto the deep seafloor or into the intermediate depths, injection into deep geological formations, or even direct conversion of CO{sub 2} to carbonate minerals. Some of these approaches are considered geoengineering (see the appropriate chapter herein). All are considered in the 2005 special report by the Intergovernmental Panel on Climate Change (IPCC 2005). Of the range of options available, geological carbon sequestration (GCS) appears to be the most actionable and economic option for major greenhouse gas reduction in the next 10-30 years. The basis for this interest includes several factors: (1) The potential capacities are large based on initial estimates. Formal estimates for global storage potential vary substantially, but are likely to be between 800 and 3300 Gt of C (3000 and 10,000 Gt of CO{sub 2}), with significant capacity located reasonably near large point sources of the CO{sub 2}. (2) GCS can begin operations with demonstrated technology. Carbon dioxide …
Date: October 3, 2007
Creator: Friedmann, S.
System: The UNT Digital Library
The Fidelity of Ocean Models With Explicit Eddies (Chapter 17) (open access)

The Fidelity of Ocean Models With Explicit Eddies (Chapter 17)

Current practices within the oceanographic community have been reviewed with regard to the use of metrics to assess the realism of the upper-ocean circulation, ventilation processes diagnosed by time-evolving mixed layer depth and mode water formation, and eddy heat fluxes in large-scale fine resolution ocean model simulations. We have striven to understand the fidelity of these simulations in the context of their potential use in future fine-resolution coupled climate system studies. A variety of methodologies are used to assess the veracity of the numerical simulations. Sea surface height variability and the location of western boundary current paths from altimetry have been used routinely as basic indicators of fine-resolution model performance. Drifters and floats have also been used to provide pseudo-Eulerian measures of the mean and variability of surface and sub-surface flows, while statistical comparisons of observed and simulated means have been carried out using James tests. Probability density functions have been used to assess the Gaussian nature of the observed and simulated flows. Length and time scales have been calculated in both Eulerian and Lagrangian frameworks from altimetry and drifters, respectively. Concise measures of multiple model performance have been obtained from Taylor diagrams. The time-evolution of the mixed layer depth …
Date: August 1, 2007
Creator: McClean, J.; Jayne, S.; Maltrud, M. & Ivanova, D.
System: The UNT Digital Library
Cavity Microwave Searches for Cosmological Axions (open access)

Cavity Microwave Searches for Cosmological Axions

This chapter will cover the search for dark matter axions based on microwave cavity experiments proposed by Pierre Sikivie. We will start with a brief overview of halo dark matter and the axion as a candidate. The principle of resonant conversion of axions in an external magnetic field will be described as well as practical considerations in optimizing the experiment as a signal-to-noise problem. A major focus of this chapter will be the two complementary strategies for ultra-low noise detection of the microwave photons--the 'photon-as-wave' approach (i.e. conventional heterojunction amplifiers and soon to be quantum-limited SQUID devices), and 'photon-as-particle' (i.e. Rydberg-atom single-quantum detection). Experimental results will be presented; these experiments have already reached well into the range of sensitivity to exclude plausible axion models, for limited ranges of mass. The section will conclude with a discussion of future plans and challenges for the microwave cavity experiment.
Date: January 22, 2007
Creator: Carosi, G. & van Bibber, K.
System: The UNT Digital Library
A Serving of Fun! (open access)

A Serving of Fun!

The document is a visual guide for understanding and remembering serving sizes for various food groups. It is "based on recommendations for active children aged 7 to 10" (p. 1).
Date: April 2007
Creator: Staples, Todd
System: The Portal to Texas History
A Consumer Guide to Better Health Care (open access)

A Consumer Guide to Better Health Care

This document explains the services provided by Medicaid, Medicaid Managed Care, the Children's Health Insurance Program (CHIP), and Children's Medicaid as well as how to access those programs and services.
Date: 2007
Creator: Texas. Health and Human Service Commission.
System: The Portal to Texas History
Debt Affordability Study, First Edition (open access)

Debt Affordability Study, First Edition

This document is a "report on the current debt position of and the debt burden carried by the state government of Texas. This project was requested by the Senate Finance Committee during the Seventy-Ninth Legislature as a joint effort between the Legislative Budget Board, the Texas Bond Review Board, and the Texas Public Finance Authority" (Legislative Budget Board Letter).
Date: February 16, 2007
Creator: Texas. Legislative Budget Board.
System: The Portal to Texas History
Snacks That Count: Recipes for Nutritious Snacks (open access)

Snacks That Count: Recipes for Nutritious Snacks

This booklet provides recipes for instructors to utilize in the classroom and guidelines for involving children in cooking activities that promote the goals of the Child and Adult Care Food Program.
Date: [2007..2014]
Creator: Texas. Department of Agriculture. Food and Nutrition Division.
System: The Portal to Texas History
Soil Survey of Crockett County, Texas (open access)

Soil Survey of Crockett County, Texas

Text describes the area, climate, agricultural history and statistics, soil-survey methods and definitions, soils and crops, land uses and agricultural methods, irrigation, and morphology and genesis of soils of Crockett County, Texas.
Date: September 2007
Creator: United States. Natural Resources Conservation Service.
System: The Portal to Texas History
Soil survey of Deaf Smith County, Texas (open access)

Soil survey of Deaf Smith County, Texas

Text describes the area, climate, agricultural history and statistics, soil-survey methods and definitions, soils and crops, land uses and agricultural methods, irrigation, and morphology and genesis of soils of Deaf Smith County, Texas.
Date: September 2007
Creator: United States. Natural Resources Conservation Service.
System: The Portal to Texas History