13 Matching Results

Results open in a new window/tab.

Metals in Chemistry and Biology: Computational Chemistry Studies (open access)

Metals in Chemistry and Biology: Computational Chemistry Studies

Numerous enzymatic reactions are controlled by the chemistry of metallic ions. This dissertation investigates the electronic properties of three transition metal (copper, chromium, and nickel) complexes and describes modeling studies performed on glutathione synthetase. (1) Copper nitrene complexes were computationally characterized, as these complexes have yet to be experimentally isolated. (2) Multireference calculations were carried out on a symmetric C2v chromium dimer derived from the crystal structure of the [(tBu3SiO)Cr(µ-OSitBu3)]2 complex. (3) The T-shaped geometry of a three-coordinate β-diketiminate nickel(I) complex with a CO ligand was compared and contrasted with isoelectronic and isosteric copper(II) complexes. (4) Glutathione synthetase (GS), an enzyme that belongs to the ATP-grasp superfamily, catalyzes the (Mg, ATP)-dependent biosynthesis of glutathione (GSH) from γ-glutamylcysteine and glycine. The free and reactant forms of human GS (wild-type and glycine mutants) were modeled computationally by employing molecular dynamics simulations, as these currently have not been structurally characterized.
Date: May 2007
Creator: Dinescu, Adriana
System: The UNT Digital Library
Layered Double Hydroxides as Anion- and Cation-Exchanging Materials (open access)

Layered Double Hydroxides as Anion- and Cation-Exchanging Materials

Layered double hydroxides (LDH) have been principally known as anion-exchanging, clay-like materials for several decades, and continues to be the main driving force for current and future research. The chemical interactions of LDH, with transition metallocyanides, have been a popular topic of investigation for many years, partly due to the use of powder x-ray diffraction and infrared spectroscopy as the main characterization tools. Each transition metallocyanide has a characteristic infrared stretching frequency that can be easily observed, and their respective sizes can be observed while intercalated within the interlayer of the LDH. The ability of LDH to incorporate metal cations or any ions/molecules/complexes, that have a postive charge, have not been previously investigated, mainly due to the chemical and physical nature of LDH. The possibility of cationic incorporation with LDH would most likely occur by surface adsorption, lattice metal replacement, or by intercalation into the LDH interlayers. Although infrared spectroscopy finds it main use through the identification of the anions incorporated with LDH, it can also be used to study and identify the various active and inactive bending and stretching modes that the metal hydroxide layers have.
Date: May 2007
Creator: Richardson, Mickey Charles
System: The UNT Digital Library
Computational Studies on Group 14 Elements (C, Si and Ge) in Organometallic and Biological Compounds. (open access)

Computational Studies on Group 14 Elements (C, Si and Ge) in Organometallic and Biological Compounds.

A series of computational studies were carried out on Group 14 (C, Si and Ge) elements in organometallic and biological compounds. Theoretical studies on classical and H-bridged A3H3+ (A=C, Si and Ge) as p ligands with different organometallic fragments at B3LYP and B3P86 level reveal a reverse charge transfer from ligand to metal in Si and Ge complexes whereas in C complexes there is a small charge transfer from metal to ligand. The H-bridged complexes are more stable than the complexes based on Si3H3+ and Ge3H3+ ligands with terminal hydrogens. The stability of the bridged systems increases from Si to Ge. Corrective scale factors for computed harmonic CºO vibrational frequencies for 31 organometallic complexes have been determined at the HF and B3LYP levels. The scaled B3LYP frequencies exhibit a greater reliability than do HF frequencies. Experimental data have shown that Si/Ge-substituted decapeptides are advantageous over their C analog in vitro and in vivo studies in modern hormone therapy. A computational investigation was carried out on the synthesized decapeptides focusing on position 5 containing Si and Ge. The results have shown that there are some differences in C, Si and Ge-containing analogs. However, further investigations are needed to elucidate the observed …
Date: May 2007
Creator: Yu, Liwen
System: The UNT Digital Library
Study of Substituted Benzenesulfonate-Containing Layered Double Hydroxides and Investigation of the Hexamethylenetetramine Route of LDH Synthesis (open access)

Study of Substituted Benzenesulfonate-Containing Layered Double Hydroxides and Investigation of the Hexamethylenetetramine Route of LDH Synthesis

Benzenesulfonates, para-substituted with amine, chloride and methyl groups were successfully incorporated into layered double hydroxides of two different compositions, 2:1 Mg-Al LDH and 2:1 Zn-Al LDH. These parent materials were also doped with small amounts of nickel and the differences in the two systems were studied. The hexamethylenetetramine route of layered double hydroxide synthesis was investigated to verify if the mechanism is indeed homogeneous. This included attempting preparation of 2:1 Mg-Al LDH, 2:1 Zn-Al LDH and 2:1 Zn-Cr LDH with two different concentrations of hexamethylenetetramine. The analytical data of the products suggest that the homogeneous precipitation may not be the true mechanism of reaction involved in LDH synthesis by this method.
Date: May 2007
Creator: Ambadapadi, Sriram
System: The UNT Digital Library
Photophysical properties of pyrene, 2,7 diazapyrene and 1,3-bis(β-naphthyl)propane. (open access)

Photophysical properties of pyrene, 2,7 diazapyrene and 1,3-bis(β-naphthyl)propane.

The luminescence properties of Van Der Waals' dimers and clusters of pyrene and diazapyrene have been investigated. Excimers, dimeric species which are associative in an excited electronic state and dissociative in their ground state, have long been established and play an important role in many areas of photochemistry. My work here focuses on the luminescence and absorption properties of ground state dimers/aggregates, which are less understood, and allows further characterization of the ground state and excited state association of these aromatic molecules.
Date: August 2007
Creator: Boateng, Stephen
System: The UNT Digital Library
Photophysical studies of silver(I), platinum(II), palladium(II), and nickel(II) complexes and their use in electronic devices. (open access)

Photophysical studies of silver(I), platinum(II), palladium(II), and nickel(II) complexes and their use in electronic devices.

This dissertation deals with two major topics that involve spectroscopic studies of (a) divalent group 10 metals and (b) silver(I)-phosphine complexes. The scope of the work involved the delineation of the electronic structure of these complexes in different environments and their use in electronic devices. The first topic is a look at the luminescence of tetrahedral silver(I)-phosphine complexes. Broad unstructured emissions with large Stokes shifts were found for these complexes. Computational analysis of the singlet and triplet state geometries suggests that this emission is due to a Jahn-Teller type distortion. The second topic represents the major thrust of this research, which is an investigation into the electronic structure of M(diimine)X2 (M= Pt(II), Pd(II), or Ni(II); X = dichloro, or dithiolate ligands) complexes and their interactions with an electron acceptor or Lewis acid. Chapter 3 assesses the use of some of these complexes in dye sensitized solar cells (DSSCs); it is shown that these complexes may lead to a viable alternative to the more expensive ruthenium-based dyes that are being implemented now. Chapter 4 is an investigation into donor/acceptor pairs involving this class of complexes, which serves as a feasibility test for the use of these complexes in organic photo-voltaics (OPVs) …
Date: December 2007
Creator: Hudson, Joshua M.
System: The UNT Digital Library
Synthesis, characterization and properties of rigid macromolecules with extended conjugation, using palladium-catalyzed alkynylated polyhaloarenes. (open access)

Synthesis, characterization and properties of rigid macromolecules with extended conjugation, using palladium-catalyzed alkynylated polyhaloarenes.

A synthetic approach to macromolecules of acetylenic arrays and luminescent properties is proposed and the execution of initial steps is described. Palladium-catalyzed coupling of 1,3,5-triiodobenzene with trimethylsilylbuta-1,3-diyne, trimethylsilylocta-1,3,5,7-tetrayne, and trimethylsilylhexadeca-1,3,5,7,9,11,13,15-octayne to yield the new 1,3,5-tris(trimethylsilylbuta-1,3-diynyl)benzene and the proposed 1,3,5-tris(8-(trimethylsilyl)octa-1,3,5,7-tetraynyl)benzene and 1,3,5-tris(trimethylsilyl)hexadeca-1,3,5,7,9,11,13,15-octaynyl)benzene respectively. The proposed three-coordinate Au (I) complexed macromolecules will be derived from the metallation of the aforementioned alkynylated arenes.
Date: December 2007
Creator: Akintomide, Temiloluwa
System: The UNT Digital Library
A Computational Investigation of the Photophysical, Electronic and Bonding Properties of Exciplex-Forming Van der Waals Systems (open access)

A Computational Investigation of the Photophysical, Electronic and Bonding Properties of Exciplex-Forming Van der Waals Systems

Calculations were performed on transition-metal complexes to (1) extrapolate the structure and bonding of the ground and phosphorescent states (2) determine the luminescence energies and (3) assist in difficult assignment of luminescent transitions. In the [Pt(SCN)4]2- complex, calculations determined that the major excited-state distortion is derived from a b2g bending mode rather than from the a1g symmetric stretching mode previously reported in the literature. Tuning of excimer formation was explained in the [Au(SCN)2]22- by interactions with the counterion. Weak bonding interactions and luminescent transitions were explained by calculation of Hg dimers, excimers and exciplexes formed with noble gases.
Date: December 2007
Creator: Sinha, Pankaj
System: The UNT Digital Library
Synthesis and characterization of diphosphine ligand substituted osmium and ruthenium clusters. (open access)

Synthesis and characterization of diphosphine ligand substituted osmium and ruthenium clusters.

The kinetics for the bridge-to-chelate isomerization of the dppe ligand in H4Ru4(CO)10(dppe) have been investigated by UV-vis and NMR spectroscopies over the temperature range of 308-328 K. The isomerization of the ligand-bridged cluster 1,2-H4Ru4(CO)10(dppe) was found to be reversible by 31P NMR spectroscopy, affording a Keq = 15.7 at 323 K in favor of the chelating dppe isomer. The forward (k1) and reverse (k-1) first-order rate constants for the reaction have been measured in different solvents and in the presence of ligand trapping agents (CO and PPh3). On the basis of the activation parameters and reaction rates that are unaffected by added CO and PPh3, a sequence involving the nondissociative migration of a phosphine moiety and two CO groups between basal ruthenium centers is proposed and discussed. The substitution of the MeCN ligands in the activated cluster 1,2-Os3(CO)10(MeCN)2 by the diphosphine ligands dppbz proceeds rapidly at room temperature to furnish a mixture of bridging and chelating Os3(CO)10(dppbz) isomers and the ortho-metalated product HOs3(CO)9[μ-(PPh2)C=C{PPh(C6H4)}C4H4]. Thermolysis of the bridging isomer 1,2-Os3(CO)10(dppbz) under mild conditions gives the chelating isomer 1,1-Os3(CO)10(dppbz), molecular structure of both the isomers have been determined by X-ray crystallography. The kinetics for the ligand isomerization has been investigated by UV-vis …
Date: August 2007
Creator: Kandala, Srikanth
System: The UNT Digital Library
Quantum Perspectives on Physical and Inorganic Chemistry (open access)

Quantum Perspectives on Physical and Inorganic Chemistry

Applications of computational quantum chemistry are presented, including an analysis of the photophysics of cyclic trinuclear coinage metal pyrazolates, an investigation into a potential catalytic cycle utilizing transition metal scorpionates to activate arene C-H bonds, and a presentation of the benchmarking of a new composite model chemistry (the correlation consistent composite approach, ccCA) for the prediction of classical barrier heights. Modeling the pyrazolate photophysics indicates a significant geometric distortion upon excitation and the impact of both metal identity and substituents on the pyrazolates, pointing to ways in which these systems may be used to produce rationally-tuned phosphors. Similarly, thermodynamic and structural investigations into the catalyst system points to promising candidates for clean catalytic activation of arenes. The ccCA was found to reproduce classical reaction barriers with chemical accuracy, outperforming all DFT, ab initio, and composite methods benchmarked.
Date: December 2007
Creator: Grimes-Marchan, Thomas V.
System: The UNT Digital Library
FTIR-ATR Characterization of Hydrogel, Polymer Films, Protein Immobilization and Benzotriazole Adsorption on Copper Surface (open access)

FTIR-ATR Characterization of Hydrogel, Polymer Films, Protein Immobilization and Benzotriazole Adsorption on Copper Surface

Plasma polymerization techniques were used to synthesize and deposit hydrogel on silicon (Si) substrate. Hydrogel is a network of polymer chains that are water-insoluble and has a high degree of flexibility. The various fields of applications of hydrogel include drug release, biosensors and tissue engineering etc. Hydrogel synthesized from different monomers possess a common property of moisture absorption. In this work two monomers were used namely 1-amino-2-propanol (1A2P) and 2(ethylamino)ethanol (2EAE) to produce polymer films deposited on Si ATR crystal. Their moisture uptake property was tested using FTIR-ATR technique. This was evident by the decrease in -OH band in increasing N2 purging time of the films. Secondly, two monomer compounds namely vinyl acetic acid and glycidyl methacrylate which have both amine and carboxylic groups are used as solid surface for the immobilization of bovine serum albumin (BSA). Pulsed plasma polymerization was used to polymerize these monomers with different duty cycles. Initial works in this field were all about protein surface adsorption. But more recently, the emphasis is on covalent bonding of protein on to the surface. This immobilization of protein on solid surface has a lot of applications in the field of biochemical studies. The polymerization of vinyl acetic acid …
Date: December 2007
Creator: Pillai, Karthikeyan
System: The UNT Digital Library
Study of Copper Electrodeposition on Ruthenium Oxide Surfaces and Bimetallic Corrosion of Copper/Ruthenium in Gallic Acid Solution (open access)

Study of Copper Electrodeposition on Ruthenium Oxide Surfaces and Bimetallic Corrosion of Copper/Ruthenium in Gallic Acid Solution

Ruthenium, proposed as a new candidate of diffusion barrier, has three different kinds of oxides, which are native oxide, electrochemical reversible oxide and electrochemical irreversible oxide. Native oxide was formed by naturally exposed to air. Electrochemical reversible oxide was formed at lower anodic potential region, and irreversible oxides were formed at higher anodic potential region. In this study, we were focusing on the effect of copper electrodeposition on each type of oxides. From decreased charge of anodic stripping peaks and underpotential deposition (UPD) waves in cyclic voltammetry (CV), efficiency of Cu deposition dropped off indicating that interfacial binding strength between Cu and Ru oxides was weakened when the Ru surface was covered with irreversible oxide and native oxide. Also, Cu UPD was hindered by both O2 and H2 plasma modified Ru surfaces because the binding strength between Cu and Ru was weakened by O2 and H2 plasma treatment. Cu/Ru and Cu/Ta bimetallic corrosion was studied for understanding the corrosion behavior between diffusion barrier (Ta and Ru) and Cu interconnects under the post chemical mechanical planarization (CMP) process in semiconductor fabrication. Gallic acid is used in post CMP slurry solution and is known well as antioxidant which is supposed to oxidize …
Date: August 2007
Creator: Yu, Kyle K.
System: The UNT Digital Library
Electrodeposition of Copper on Ruthenium Oxides and Bimetallic Corrosion of Copper/Ruthenium in Polyphenolic Antioxidants (open access)

Electrodeposition of Copper on Ruthenium Oxides and Bimetallic Corrosion of Copper/Ruthenium in Polyphenolic Antioxidants

Copper (Cu) electrodeposition on ruthenium (Ru) oxides was studied due to important implications in semiconductor industry. Ruthenium, proposed as the copper diffusion barrier/liner material, has higher oxygen affinity to form different oxides. Three different oxides (the native oxide, reversible oxide, and irreversible oxide) were studied. Native oxide can be formed on exposing Ru in atmosphere. The reversible and irreversible oxides can be formed by applying electrochemical potential. Investigation of Cu under potential deposition on these oxides indicates the similarity between native and reversible oxides by its nature of inhibiting Cu deposition. Irreversible oxide formed on Ru surface is rather conductive and interfacial binding between Cu and Ru is greatly enhanced. After deposition, bimetallic corrosion of Cu/Ru in different polyphenols was studied. Polyphenols are widely used as antioxidants in post chemical mechanical planarization (CMP). For this purpose, different trihydroxyl substituted benzenes were used as antioxidants. Ru, with its noble nature enhances bimetallic corrosion of Cu. Gallic acid (3,4,5 - trihydroxybenzoic acid) was chosen as model compound. A mechanism has been proposed and validity of the mechanism was checked with other antioxidants. Results show that understanding the chemical structure of antioxidants is necessary during its course of reaction with Cu.
Date: August 2007
Creator: Venkataraman, Shyam S.
System: The UNT Digital Library