3,706 Matching Results

Results open in a new window/tab.

Elastic and transport properties in polycrystals of crackedgrains: Cross-property relations and microstructure (open access)

Elastic and transport properties in polycrystals of crackedgrains: Cross-property relations and microstructure

Some arguments of Bristow (1960) concerning the effects of cracks on elastic and transport (i.e., electrical or thermal conduction) properties of cold-worked metals are reexamined. The discussion is posed in terms of a modern understanding of bounds and estimates for physical properties of polycrystals--in contrast to Bristow's approach using simple mixture theory. One type of specialized result emphasized here is the cross-property estimates and bounds that can be obtained using the methods presented. Our results ultimately agree with those of Bristow, i.e., confirming that microcracking is not likely to be the main cause of the observed elastic behavior of cold-worked metals. However, it also becomes clear that the mixture theory approach to the analysis is too simple and that crack-crack interactions are necessary for proper quantitative study of Bristow's problem.
Date: October 2, 2007
Creator: Berryman, J.G.
System: The UNT Digital Library
IMG/M: A data management and analysis system for metagenomes (open access)

IMG/M: A data management and analysis system for metagenomes

IMG/M is a data management and analysis system for microbial community genomes (metagenomes) hosted at the Joint Genome Institute (JGI). IMG/M consists of metagenome data integrated with isolate microbial genomes from the Integrated Microbial Genomes (IMG) system. IMG/M provides IMG's comparative data analysis tools extended to handle metagenome data, together with metagenome-specific analysis tools. IMG/M is available at http://img.jgi.doe.gov/m. Studies of the collective genomes (also known as metagenomes) of environmental microbial communities (also known as microbiomes) are expected to lead to advances in environmental cleanup, agriculture, industrial processes, alternative energy production, and human health (1). Metagenomes of specific microbiome samples are sequenced by organizations worldwide, such as the Department of Energy's (DOE) Joint Genome Institute (JGI), the Venter Institute and the Washington University in St. Louis using different sequencing strategies, technology platforms, and annotation procedures. According to the Genomes OnLine Database, about 28 metagenome studies have been published to date, with over 60 other projects ongoing and more in the process of being launched (2). The Department of Energy's (DOE) Joint Genome Institute (JGI) is one of the major contributors of metagenome sequence data, currently sequencing more than 50% of the reported metagenome projects worldwide. Due to the higher complexity, …
Date: August 1, 2007
Creator: Markowitz, Victor M.; Ivanova, Natalia N.; Szeto, Ernest; Palaniappan, Krishna; Chu, Ken; Dalevi, Daniel et al.
System: The UNT Digital Library
Initial Study Comparing the Radiating Divertor Behavior in Single-Null and Double-Null Plasmas in DIII-D (open access)

Initial Study Comparing the Radiating Divertor Behavior in Single-Null and Double-Null Plasmas in DIII-D

'Puff and pump' radiating divertor scenarios [1,2] were applied to upper SN and DN H-mode plasmas. Under similar operating conditions, argon (Ar) accumulated in the main plasma of single-null (SN) plasmas more rapidly and reached a higher steady-state concentration when the B x {del}B ion drift direction was toward the divertor than when the B x {del}B ion drift direction was out of the divertor. The initial rate that Ar accumulated inside double-null (DN) plasmas was more than twice that of comparably-prepared SNs with the same B x {del}B direction. One way to reduce power loading at the divertor targets is to 'seed' the divertor plasma with impurities that radiatively reduce the conducted power. Studies have shown that the concentration of impurities in the divertor are increased by raising the flow of deuterium ions (D{sup +}) into the divertor by a combination of upstream deuterium gas puffing and active particle exhaust at the divertor targets, i.e., puff-and-pump. An enhanced D{sup +} particle flow toward the divertor targets exerts a frictional drag on impurities, and inhibits their escape from the divertor. A puff-and-pump approach using Ar as the impurity was successfully applied in recent DIII-D experiments to SN plasmas [3] while …
Date: June 27, 2007
Creator: Petrie, T; Brooks, N; Fenstermacher, M; Groth, M; Hyatt, A; Isler, R et al.
System: The UNT Digital Library
Achieving High Flux Amplification in a Gun-driven, Flux-core Spheromak (open access)

Achieving High Flux Amplification in a Gun-driven, Flux-core Spheromak

None
Date: February 20, 2007
Creator: Hooper, E. B.; Hill, D. N.; McLean, H. S.; Romero-Talam?s, C. A. & Wood, R. D.
System: The UNT Digital Library
LC scintillator-based muon detector tail-catcher R&D (open access)

LC scintillator-based muon detector tail-catcher R&D

Preliminary analysis of test beam data from strip scintillator planes read-out with multi-anode PMTs (MAPMTs) is presented along with a description of the independent systematic measurements of relative response for all channels of several MAPMTs used in the tests. Test beam measurements for the response of a scintillator strip, read out with Si photo-sensors, is also described.
Date: November 1, 2007
Creator: Abrams, R.; Blazey, G.; Driutti, A.; Dychkant, A.; Fisk, H.E.; Gutierrez, A. et al.
System: The UNT Digital Library
NIF: A Path to Fusion Energy (open access)

NIF: A Path to Fusion Energy

Fusion energy has long been considered a promising, clean, nearly inexhaustible source of energy. Power production by fusion micro-explosions of inertial confinement fusion (ICF) targets has been a long-term research goal since the invention of the first laser in 1960. The National Ignition Facility (NIF) is poised to take the next important step in the journey by beginning experiments researching ICF ignition. Ignition on NIF will be the culmination of over thirty years of ICF research on high-powered laser systems such as the Nova laser at Lawrence Livermore National Laboratory (LLNL) and the OMEGA laser at the University of Rochester, as well as smaller systems around the world. NIF is a 192-beam Nd-glass laser facility at LLNL that is more than 90% complete. The first cluster of 48 beams is operational in the laser bay, the second cluster is now being commissioned, and the beam path to the target chamber is being installed. The Project will be completed in 2009, and ignition experiments will start in 2010. When completed, NIF will produce up to 1.8 MJ of 0.35-{micro}m light in highly shaped pulses required for ignition. It will have beam stability and control to higher precision than any other laser …
Date: June 1, 2007
Creator: Moses, Edward
System: The UNT Digital Library
glideinWMS - A generic pilot-based Workload Management System (open access)

glideinWMS - A generic pilot-based Workload Management System

The Grid resources are distributed among hundreds of independent Grid sites, requiring a higher level Workload Management System (WMS) to be used efficiently. Pilot jobs have been used for this purpose by many communities, bringing increased reliability, global fair share and just in time resource matching. GlideinWMS is a WMS based on the Condor glidein concept, i.e. a regular Condor pool, with the Condor daemons (startds) being started by pilot jobs, and real jobs being vanilla, standard or MPI universe jobs. The glideinWMS is composed of a set of Glidein Factories, handling the submission of pilot jobs to a set of Grid sites, and a set of VO Frontends, requesting pilot submission based on the status of user jobs. This paper contains the structural overview of glideinWMS as well as a detailed description of the current implementation and the current scalability limits.
Date: September 1, 2007
Creator: Sfiligoi, Igor
System: The UNT Digital Library
Sharp Reduction of the Secondary Electron Emission Yield from Grooved Surfaces (open access)

Sharp Reduction of the Secondary Electron Emission Yield from Grooved Surfaces

The effect of an artificially-enhanced rough surface on the secondary electron emission yield (SEY) was investigated both theoretically and experimentally. Analytical studies on triangular and rectangular grooved surfaces show the connection between the characteristic parameters of a given geometry to the SEY reduction. The effect of a strong magnetic field is also discussed. SEY of grooved samples have been measured and the results agree with Monte-Carlo simulations.
Date: November 28, 2007
Creator: Pivi, M. T. F.; King, F. K.; Kirby, R. E.; Ruabenheimer, T. O.; Stupakov, G. & Le Pimpec, F.
System: The UNT Digital Library
ITER Shape Controller and Transport Simulations (open access)

ITER Shape Controller and Transport Simulations

We currently use the CORSICA integrated modeling code for scenario studies for both the DIII-D and ITER experiments. In these simulations, free- or fixed-boundary equilibria are simultaneously converged with thermal evolution determined from transport models providing temperature and current density profiles. Using a combination of fixed boundary evolution followed by free-boundary calculation to determine the separatrix and coil currents. In the free-boundary calculation, we use the state-space controller representation with transport simulations to provide feedback modeling of shape, vertical stability and profile control. In addition to a tightly coupled calculation with simulator and controller imbedded inside CORSICA, we also use a remote procedure call interface to couple the CORSICA non-linear plasma simulations to the controller environments developed within the Mathworks Matlab/Simulink environment. We present transport simulations using full shape and vertical stability control with evolution of the temperature profiles to provide simulations of the ITER controller and plasma response.
Date: May 31, 2007
Creator: Casper, T A; Meyer, W H; Pearlstein, L D & Portone, A
System: The UNT Digital Library
Spatial resolution limits for synchrotron-based infrared spectromicroscopy (open access)

Spatial resolution limits for synchrotron-based infrared spectromicroscopy

Detailed spatial resolution tests were performed on beamline 1.4.4 at the Advanced Light Source synchrotron facility in Berkeley, CA. The high-brightness synchrotron source is coupled at this beamline to a Thermo-Electron Continumum XL infrared microscope. Two types of resolution tests in both the mid-IR (using a KBr beamsplitter and an MCT-A* detector) and in the near-IR (using a CaF2 beamsplitter and an InGaAS detector) were performed and compared to a simple diffraction-limited spot size model. At the shorter wavelengths in the near-IR the experimental results begin to deviate from only diffraction-limited. The entire data set is fit using a combined diffraction-limit and demagnified electron beam source size model. This description experimentally verifies how the physical electron beam size of the synchrotron source demagnified to the sample stage on the endstation begins to dominate the focussed spot size and therefore spatial resolution at higher energies. We discuss how different facilities, beamlines, and microscopes will affect the achievable spatial resolution.
Date: October 15, 2007
Creator: Levenson, Erika; Lerch, Philippe & Martin, Michael C.
System: The UNT Digital Library
MULTISCALE MODELING OF POLYMER NANOCOMPOSITES (open access)

MULTISCALE MODELING OF POLYMER NANOCOMPOSITES

Polymer Nanocomposites are an important class of nanomaterials with potential applications including but not limited to structural and cushion materials, electromagnetic and heat shields, conducting plastics, sensors, and catalysts for various chemical and bio processes. Success in most such applications hinges on molecular-level control of structure and assembly, and a deep understanding of how the overall morphology of various components and the interfaces between them affect the composite properties at the macroscale. The length and time-scales associated with such assemblies are prohibitively large for a full atomistic modeling. Instead we adopt a multiscale methodology in which atomic-level interactions between different components of a composite are incorporated into a coarse-grained simulation of the mesoscale morphology, which is then represented on a numerical grid and the macroscopic properties computed using a finite-elements method.
Date: July 16, 2007
Creator: Maiti, A
System: The UNT Digital Library
GeV electron beams from cm-scale channel guided laser wakefieldaccelerator (open access)

GeV electron beams from cm-scale channel guided laser wakefieldaccelerator

Laser-wakefield accelerators (LWFA) can produce electricfields of order 10-100 GV/m suitable for acceleration of electrons torelativistic energies. The wakefields are excited by a relativisticallyintense laser pulse propagating through a plasma and have a phasevelocity determined by the group velocity of the light pulse. Twoimportant effects that can limit the acceleration distanceand hence thenet energy gain obtained by an electron are diffraction of the drivelaser pulse and particle-wake dephasing. Diffraction of a focusedultra-short laser pulse can be overcome by using preformed plasmachannels. The dephasing limit can be increased by operating at a lowerplasma density, since this results in an increase in the laser groupvelocity. Here we present detailed results on the generation of GeV-classelectron beams using an intense femtosecond laser beamand a 3.3 cm longpreformed discharge-based plasma channel [W.P. Leemans et al., NaturePhysics 2, 696-699 (2006)]. The use of a discharge-based waveguidepermitted operation at an order ofmagnitude lower density and 15 timeslonger distance than in previous experiments that relied on laserpreformed plasma channels. Laser pulses with peak power ranging from10-50 TW were guided over more than 20 Rayleigh ranges and high-qualityelectron beams with energy up to 1 GeV were obtained by channelling a 40TW peak power laser pulse. The dependence of …
Date: February 20, 2007
Creator: Nakamura, K.; Nagler, B.; Toth, Cs.; Geddes, C. G. R.; Schroeder, C.; Esarey, E. et al.
System: The UNT Digital Library
TREATABILITY TEST FOR REMOVING TECHNETIUM-99 FROM 200-ZP-1 GROUNDWATER HANFORD SITE (open access)

TREATABILITY TEST FOR REMOVING TECHNETIUM-99 FROM 200-ZP-1 GROUNDWATER HANFORD SITE

The 200-ZP-1 Groundwater Operable Unit (OU) is one of two groundwater OUs located within the 200 West groundwater aggregate area of the Hanford Site. The primary risk-driving contaminants within the 200-ZP-1 OU include carbon tetrachloride and technetium-99 (Tc-99). A pump-and-treat system for this OU was initially installed in 1995 to control the 0.002 kg/m{sup 3} (2000 {micro}g/L) contour of the carbon tetrachloride plume. Carbon tetrachloride is removed from groundwater with the assistance of an air-stripping tower. Ten extraction wells and three injection wells operate at a combined rate of approximately 0.017m{sup 3}/s (17.03 L/s). In 2005, groundwater from two of the extraction wells (299-W15-765 and 299-W15-44) began to show concentrations greater than twice the maximum contaminant level (MCL) of Tc-99 (33,309 beq/m{sup 3} or 900 pCi/L). The Tc-99 groundwater concentrations from all ten of the extraction wells when mixed were more than one-half of the MCL and were slowly increasing. If concentrations continued to rise and the water remained untreated for Tc-99, there was concern that the water re-injected into the aquifer could exceed the MCL standard. Multiple treatment technologies were reviewed for selectively removing Tc-99 from the groundwater. Of the treatment technologies, only ion exchange was determined to be …
Date: November 29, 2007
Creator: SW, PETERSEN; AC, TORTOSO; WS, ELLIOTT & ME, BYRNES
System: The UNT Digital Library
OPTICAL AND DYNAMIC PROPERTIES OF UNDOPED AND DOPED SEMICONDUCTOR NANOSTRUCTURES (open access)

OPTICAL AND DYNAMIC PROPERTIES OF UNDOPED AND DOPED SEMICONDUCTOR NANOSTRUCTURES

This chapter provides an overview of some recent research activities on the study of optical and dynamic properties of semiconductor nanomaterials. The emphasis is on unique aspects of these properties in nanostructures as compared to bulk materials. Linear, including absorption and luminescence, and nonlinear optical as well as dynamic properties of semiconductor nanoparticles are discussed with focus on their dependence on particle size, shape, and surface characteristics. Both doped and undoped semiconductor nanomaterials are highlighted and contrasted to illustrate the use of doping to effectively alter and probe nanomaterial properties. Some emerging applications of optical nanomaterials are discussed towards the end of the chapter, including solar energy conversion, optical sensing of chemicals and biochemicals, solid state lighting, photocatalysis, and photoelectrochemistry.
Date: September 28, 2007
Creator: Grant, C D & Zhang, J Z
System: The UNT Digital Library
The Formation of Contact and Very Close Binaries (open access)

The Formation of Contact and Very Close Binaries

We explore the possibility that all close binaries, i.e. those with periods {approx}< 3 d, including contact (W UMa) binaries, are produced from initially wider binaries (periods of say 10's of days) by the action of a triple companion through the medium of Kozai Cycles with Tidal Friction (KCTF).
Date: August 10, 2007
Creator: Kisseleva-Eggleton, L & Eggleton, P P
System: The UNT Digital Library
Geometry of non-supersymmetric three-charge bound states (open access)

Geometry of non-supersymmetric three-charge bound states

We study the smooth non-supersymmetric three-charge microstatesof Jejjala, Madden, Ross and Titchener using Kaluza-Klein reductions of the solutions to five and four dimensions. Our aim is to improve our understanding of the relation between these non-supersymmetric solutions and the well-studied supersymmetric cases. We find some surprising qualitative differences. In the five-dimensional description, the solution has orbifold fixed points which break supersymmetry locally, so the geometries cannot be thought of as made up of separate half-BPS centers. In the four-dimensional description, the two singularities in the geometry are connected by a conical singularity, which makes it impossible to treat them independently and assign unambiguous brane charges to these centers.
Date: May 14, 2007
Creator: Gimon, Eric G.; Levi, Thomas S. & Ross, Simon F.
System: The UNT Digital Library
Behavior of Repeating Earthquake Sequences in Central California and the Implications for Subsurface Fault Creep (open access)

Behavior of Repeating Earthquake Sequences in Central California and the Implications for Subsurface Fault Creep

Repeating earthquakes (REs) are sequences of events that have nearly identical waveforms and are interpreted to represent fault asperities driven to failure by loading from aseismic creep on the surrounding fault surface at depth. We investigate the occurrence of these REs along faults in central California to determine which faults exhibit creep and the spatio-temporal distribution of this creep. At the juncture of the San Andreas and southern Calaveras-Paicines faults, both faults as well as a smaller secondary fault, the Quien Sabe fault, are observed to produce REs over the observation period of March 1984-May 2005. REs in this area reflect a heterogeneous creep distribution along the fault plane with significant variations in time. Cumulative slip over the observation period at individual sequence locations is determined to range from 5.5-58.2 cm on the San Andreas fault, 4.8-14.1 cm on the southern Calaveras-Paicines fault, and 4.9-24.8 cm on the Quien Sabe fault. Creep at depth appears to mimic the behaviors seen of creep on the surface in that evidence of steady slip, triggered slip, and episodic slip phenomena are also observed in the RE sequences. For comparison, we investigate the occurrence of REs west of the San Andreas fault within the …
Date: July 9, 2007
Creator: Templeton, D C; Nadeau, R & Burgmann, R
System: The UNT Digital Library
Probing Late Neutrino Mass Properties With SupernovaNeutrinos (open access)

Probing Late Neutrino Mass Properties With SupernovaNeutrinos

Models of late-time neutrino mass generation contain new interactions of the cosmic background neutrinos with supernova relic neutrinos (SRNs). Exchange of an on-shell light scalar may lead to significant modification of the differential SRN flux observed at earth. We consider an Abelian U(1) model for generating neutrino masses at low scales, and show that there are cases for which the changes induced in the flux allow one to distinguish the Majorana or Dirac nature of neutrinos, as well as the type of neutrino mass hierarchy (normal or inverted or quasi-degenerate). In some region of parameter space the determination of the absolute values of the neutrino masses is also conceivable. Measurements of the presence of these effects may be possible at the next-generation water Cerenkov detectors enriched with Gadolinium, or a 100 kton liquid argon detector.
Date: August 8, 2007
Creator: Baker, Joseph; Goldberg, Haim; Perez, Gilad & Sarcevic, Ina
System: The UNT Digital Library
Towards a Sustainable Energy Balance: Progressive Efficiency and the Return of Energy Conservation (open access)

Towards a Sustainable Energy Balance: Progressive Efficiency and the Return of Energy Conservation

We argue that a primary focus on energy efficiency may not be sufficient to slow (and ultimately reverse) the growth in total energy consumption and carbon emissions. Instead, policy makers need to return to an earlier emphasis on"conservation," with energy efficiency seen as a means rather than an end in itself. We briefly review the concept of"intensive" versus"extensive" variables (i.e., energy efficiency versus energy consumption), and why attention to both consumption and efficiency is essential for effective policy in a carbon- and oil-constrained world with increasingly brittle energy markets. To start, energy indicators and policy evaluation metrics need to reflect energy consumption as well as efficiency. We introduce the concept of"progressive efficiency," with the expected or required level of efficiency varying as a function of house size, appliance capacity, or more generally, the scale of energy services. We propose introducing progressive efficiency criteria first in consumer information programs (including appliance labeling categories) and then in voluntary rating and recognition programs such as ENERGY STAR. As acceptance grows, the concept could be extended to utility rebates, tax incentives, and ultimately to mandatory codes and standards. For these and other programs, incorporating criteria for consumption as well as efficiency offers a path …
Date: August 13, 2007
Creator: Diamond, Rick; Harris, Jeff; Diamond, Rick; Iyer, Maithili; Payne, Christopher; Blumstein, Carl et al.
System: The UNT Digital Library
CAMS/LLNL Ion Source Efficiency Revisited (open access)

CAMS/LLNL Ion Source Efficiency Revisited

None
Date: April 17, 2007
Creator: Fallon, S. J.; Guilderson, T. P. & Brown, T. A.
System: The UNT Digital Library
Plasma Suppression of Large Scale Structure Formation in the Universe (open access)

Plasma Suppression of Large Scale Structure Formation in the Universe

We point out that during the reionization epoch of the cosmic history, the plasma collective effect among the ordinary matter would suppress the large scale structure formation. The imperfect Debye shielding at finite temperature would induce a residual long-range electrostatic potential which, working together with the baryon thermal pressure, would counter the gravitational collapse. As a result the effective Jean's length, {tilde {lambda}}{sub J}, is increased by a factor, {tilde {lambda}}{sub J}/{lambda}{sub J} = {radical}8/5, relative to the conventional one. For scales smaller than the effective Jean's scale the plasma would oscillate at the ion-acoustic frequency. The modes that would be influenced by this effect depend on the starting time and the initial temperature of reionization, but roughly lie in the range 0.5hMpc{sup -1} < k, which corresponds to the region of the Lyman-{alpha} forest from the inter-galactic medium. We predict that in the linear regime of density-contrast growth, the plasma suppression of the matter power spectrum would approach 1 - ({Omega}{sub dm}/{Omega}{sub m}){sup 2} {approx} 1 -(5/6){sup 2} {approx} 30%.
Date: December 10, 2007
Creator: Chen, Pisin & Lai, Kwang-Chang
System: The UNT Digital Library
An Update on the Status of the NIF Power Conditioning System (open access)

An Update on the Status of the NIF Power Conditioning System

The National Ignition Facility (NIF) Power Conditioning System provides the pulsed excitation required to drive flashlamps in the laser's optical amplifiers. Modular in design, each of the 192 Main Energy Storage Modules (MESMs) stores up to 2.2 MJ of electrical energy in its capacitor bank before delivering the energy to 20 pairs of flashlamps in a 400 {micro}s pulse (10% power points). The peak current of each MESM discharge is 0.5 MA. Production, installation, commissioning and operation of the NIF Power Conditioning continue to progress rapidly, with the goals of completing accelerated production and commissioning by early 2008, while maintaining an aggressive operation schedule. To date, more than 97% of the required modules have been assembled, shipped and installed in the facility, representing more that 380 MJ of stored energy available for driving NIF flashlamps. The MESMs have displayed outstanding reliability during daily, multiple-shift operations.
Date: September 6, 2007
Creator: Arnold, P. A.; Hulsey, S.; Ullery, G. T.; Petersen, D. E.; Pendleton, D. L.; Ollis, C. W. et al.
System: The UNT Digital Library
SOFC Interconnect Work at NETL (open access)

SOFC Interconnect Work at NETL

None
Date: December 1, 2007
Creator: Jablonski, P. D. & Alman, D. E.
System: The UNT Digital Library
CFD Analysis of Turbulent Flow Phenomena in the Lower Plenum of a Prismatic Gas-Cooled Reactor (open access)

CFD Analysis of Turbulent Flow Phenomena in the Lower Plenum of a Prismatic Gas-Cooled Reactor

This paper is concerned with the implementation of a computational model of turbulent flow in a section of the lower plenum of Very High Temperature Reactor (VHTR). The proposed model has been encoded in a state-of-the-art CFD code, NPHASE. The results of NPHASE predictions have been compared against the experimental data collected using a scaled model of a sub-region in the lower plenum of a modular prismatic gas-cooled reactor. It has been shown that the NPHASE-based model is capable of predicting a three-dimensional velocity field in a complex geometrical configuration of VHTR lower plenum. The current and future validations of computational predictions are necessary for design and analysis of new reactor concepts, as well as for safety analysis and licensing calculations.
Date: September 1, 2007
Creator: Gallaway, T.; Antal, S.P.; Podowski, M.Z. & Guillen, D.P.
System: The UNT Digital Library