Coelomic Fluid Protein Profile in Earthworms Following Bacterial Challenge. (open access)

Coelomic Fluid Protein Profile in Earthworms Following Bacterial Challenge.

Proteomic techniques were used to evaluate the protein profile of the earthworm, (Lumbricus terrestris), following a bacterial challenge. One control group received no injection; a second control group received injections of phosphate buffer solution (PBS). The experimental group received injections of PBS containing (Aeromonas hydrophila). After incubation for 12 hours at 20°C, coelomic fluid was collected from each group for analysis by 2-D electrophoresis. There were significant differences in spot appearance and density between control and experimental groups. Sixteen spots showed a two-fold increase in density and 63 showed at least a two-fold decrease in density between samples from control and bacteria-challenged earthworms, respectively, suggesting up- and down-modulation of proteins potentially involved in the earthworm's response to bacterial challenge.
Date: December 2006
Creator: Brooks, Geoffrey Lance
System: The UNT Digital Library
Function of the ENOD8 gene in nodules of Medicago truncatula. (open access)

Function of the ENOD8 gene in nodules of Medicago truncatula.

To elaborate on the function(s) of the ENOD8 gene in the nodules of M. truncatula, several different experimental approaches were used. A census of the ENOD8 genes was first completed indicating that only ENOD8.1 (nt10554-12564 of GenBank AF463407) is highly expressed in nodule tissues. A maltose binding protein-ENOD8 fusion protein was made with an E. coli recombinant system. A variety of biochemical assays were undertaken with the MBP-ENOD8 recombinant protein expressed in E. coli, which did not yield the esterase activity observed for ENOD8 protein nodule fractions purified from M. sativa, tested on general esterase substrates, α-naphthyl acetate, and p-nitrophenylacetate. Attempts were also made to express ENOD8 in a Pichia pastoris system; no ENOD8 protein could be detected from Pichia pastoris strains which were transformed with the ENOD8 expression cassette. Additionally, it was shown that the ENOD8 protein can be recombinantly synthesized by Nicotiana benthamiana in a soluble form, which could be tested for activity toward esterase substrates, bearing resemblance to nodule compounds, such as the Nod factor. Transcription localization studies using an ENOD8 promoter gusA fusion indicated that ENOD8 is expressed in the bacteroid-invaded zone of the nodule. The ENOD8 protein was also detected in that same zone by …
Date: December 2006
Creator: Coque, Laurent
System: The UNT Digital Library

Influence of Sediment Exposure and Water Depth on Torpedograss Invasion of Lake Okeechobee, Florida

Access: Use of this item is restricted to the UNT Community
Torpedograss (Panicum repens) was first observed in Lake Okeechobee in the 1970s and appears to have displaced an estimated 6,400 ha of native plants, such as spikerush (Eleocharis cellulosa), where inundation depths are often less than 50 cm. Two series of studies evaluated substrate exposure and water depth influences on torpedograss establishment and competitiveness. Results revealed that fragments remain buoyant for extended periods and so facilitate dispersal. Once anchored to exposed substrate fragments can readily root and establish. Subsequently, torpedograss thrives when subjected to inundations to 75 cm and survives prolonged exposure to depths greater than 1 m. These findings suggest that fluctuating water levels contribute to torpedograss dispersal and colonization patterns and that low water levels increase marsh area susceptible to invasion. The competition study found that spikerush grown in monoculture produces significantly more biomass when continually inundated to shallow depths (10 to 20 cm) than when subjected to drier conditions (-25 cm) or greater inundations (80 cm). In contrast, torpedograss establishes more readily on exposed substrate (-25 to 0 cm) compared to inundate substrates. During the first growing season biomass production increases as substrate exposure interval increases. However, during the second year, established torpedograss produces more biomass when …
Date: December 2006
Creator: Smith, Dian H.
System: The UNT Digital Library