4-D High-Resolution Seismic Reflection Monitoring of Miscible CO2 Injected into a Carbonate Reservoir (open access)

4-D High-Resolution Seismic Reflection Monitoring of Miscible CO2 Injected into a Carbonate Reservoir

The objective of this research project is to acquire, process, and interpret multiple high-resolution 3-D compressional wave and 2-D, 2-C shear wave seismic data in an attempt to observe changes in fluid characteristics in an oil field before, during, and after the miscible carbon dioxide (CO{sub 2}) flood that began around December 1, 2003, as part of the DOE-sponsored Class Revisit Project (DOE DE-AC26-00BC15124). Unique and key to this imaging activity is the high-resolution nature of the seismic data, minimal deployment design, and the temporal sampling throughout the flood. The 900-m-deep test reservoir is located in central Kansas oomoldic limestones of the Lansing-Kansas City Group, deposited on a shallow marine shelf in Pennsylvanian time. After 30 months of seismic monitoring, one baseline and eight monitor surveys clearly detected changes that appear consistent with movement of CO{sub 2} as modeled with fluid simulators and observed in production data.
Date: August 31, 2006
Creator: Miller, Richard D.; Raef, Abdelmoneam E.; Byrnes, Alan P. & Harrison, William E.
Object Type: Report
System: The UNT Digital Library
Advanced Gasification By-Product Utilization (open access)

Advanced Gasification By-Product Utilization

With the passing of legislation designed to permanently cap and reduce mercury emissions from coal-fired utilities, it is more important than ever to develop and improve upon methods of controlling mercury emissions. One promising technique is carbon sorbent injection into the flue gas of the coal-fired power plant. Currently, this technology is very expensive as costly commercially activated carbons are used as sorbents. There is also a significant lack of understanding of the interaction between mercury vapor and the carbon sorbent, which adds to the difficulty of predicting the amount of sorbent needed for specific plant configurations. Due to its inherent porosity and adsorption properties as well as on-site availability, carbons derived from gasifiers are potential mercury sorbent candidates. Furthermore, because of the increasing restricted use of landfilling, the coal industry is very interested in finding uses for these materials as an alternative to the current disposal practice. The results of laboratory investigations and supporting technical assessments conducted under DOE Subcontract No. DE-FG26-03NT41795 are reported. This contract was with the University of Kentucky Research Foundation, which supports work with the University of Kentucky Center for Applied Energy Research and The Pennsylvania State University Energy Institute. The worked described was part …
Date: August 31, 2006
Creator: Andrews, Rodney; Rubel, Aurora; Groppo, Jack; Marrs, Brock; Geertsema, Ari; Huggins, Frank et al.
Object Type: Report
System: The UNT Digital Library
CO2 Sequestration Potential of Texas Low-Rank Coals (open access)

CO2 Sequestration Potential of Texas Low-Rank Coals

Injection of CO{sub 2} in coalbeds is a plausible method of reducing atmospheric emissions of CO{sub 2}, and it can have the additional benefit of enhancing methane recovery from coal. Most previous studies have evaluated the merits of CO{sub 2} disposal in high-rank coals. The objective of this research was to determine the technical and economic feasibility of CO{sub 2} sequestration in, and enhanced coalbed methane (ECBM) recovery from, low-rank coals in the Texas Gulf Coast area. Our research included an extensive coal characterization program, including acquisition and analysis of coal core samples and well transient test data. We conducted deterministic and probabilistic reservoir simulation and economic studies to evaluate the effects of injectant fluid composition (pure CO{sub 2} and flue gas), well spacing, injection rate, and dewatering on CO{sub 2} sequestration and ECBM recovery in low-rank coals of the Calvert Bluff formation of the Texas Wilcox Group. Shallow and deep Calvert Bluff coals occur in two, distinct, coalbed gas petroleum systems that are separated by a transition zone. Calvert Bluff coals < 3,500 ft deep are part of a biogenic coalbed gas system. They have low gas content and are part of a freshwater aquifer. In contrast, Wilcox coals …
Date: August 31, 2006
Creator: McVay, Duane; Walter Ayers, Jr.; Jensen, Jerry; Garduno, Jorge; Hernandez, Gonzola; Bello, Rasheed et al.
Object Type: Report
System: The UNT Digital Library
Crustal Structure of Iraq from Receiver Functions and Surface Wave Dispersion (open access)

Crustal Structure of Iraq from Receiver Functions and Surface Wave Dispersion

We report the crustal structure of Iraq, located in the northeastern Arabian plate, estimated by joint inversion of P-wave receiver functions and surface wave group velocity dispersion. Receiver functions were computed from teleseismic recordings at two temporary broadband seismic stations in Mosul (MSL) and Baghdad (BHD), separated by approximately 360 km. Group velocity dispersion curves at the sites were derived from continental-scale tomography of Pasyanos (2006). The inversion results show that the crustal thicknesses are 39 km at MSL and 43 km at BHD. Both sites reveal low velocity surface layers consistent with sedimentary thickness of about 3 km at station MSL and 7 km at BHD, agreeing well with the existing models. Ignoring the sediments, the crustal velocities and thicknesses are remarkably similar between the two stations, suggesting that the crustal structure of the proto-Arabian Platform in northern Iraq was uniform before subsidence and deposition of the sediments in the Cenozoic. Deeper low velocity sediments at BHD are expected to result in higher ground motions for earthquakes.
Date: August 31, 2006
Creator: Gok, Rengin; Mahdi, Hanan; Al-Shukri, Haydar & Rodgers, Arthur J.
Object Type: Report
System: The UNT Digital Library
Development of Sulfur and Carbon Tolerant Reforming Alloy Catalysts Aided by Fundamental Atomistics Insights (open access)

Development of Sulfur and Carbon Tolerant Reforming Alloy Catalysts Aided by Fundamental Atomistics Insights

Current hydrocarbon reforming catalysts suffer from rapid carbon and sulfur poisoning. Even though there is a tremendous incentive to develop more efficient catalysts, these materials are currently formulated using inefficient trial and error experimental approaches. We have utilized a novel hybrid experimental/theoretical approach, combining quantum Density Functional Theory (DFT) calculations and various state-of-the-art experimental tools, to formulate carbon tolerant reforming catalysts. We have employed DFT calculations to develop molecular insights into the elementary chemical transformations that lead to carbon poisoning of Ni catalysts. Based on the obtained molecular insights, we have identified, using DFT quantum calculation, Sn/Ni alloy as a potential carbon tolerant reforming catalyst. Sn/Ni alloy was synthesized and tested in steam reforming of methane, propane, and isooctane. We demonstrated that the alloy catalyst is carbon-tolerant under nearly stoichiometric steam-to-carbon ratios. Under these conditions, monometallic Ni is rapidly poisoned by sp2 carbon deposits. The research approach is distinguished by a few characteristics: (a) Knowledge-based, bottom-up approach, compared to the traditional trial and error approach, allows for a more efficient and systematic discovery of improved catalysts. (b) The focus is on exploring alloy materials which have been largely unexplored as potential reforming catalysts.
Date: August 31, 2006
Creator: Linic, Suljo
Object Type: Report
System: The UNT Digital Library
EXTRACTION OF FRACTURE-MECHANICS AND TRANSMISSION-ELECTRON-MICROSCOPY SAMPLES FROM TRITIUM-EXPOSED RESERVOIRS USING ELECTRIC-DISCHARGE MACHINING (open access)

EXTRACTION OF FRACTURE-MECHANICS AND TRANSMISSION-ELECTRON-MICROSCOPY SAMPLES FROM TRITIUM-EXPOSED RESERVOIRS USING ELECTRIC-DISCHARGE MACHINING

The Enhanced Surveillance Campaign is funding a program to investigate tritium aging effects on the structural properties of tritium reservoir steels. The program is designed to investigate how the structural properties of reservoir steels change during tritium service and to examine the role of microstructure and reservoir manufacturing on tritium compatibility. New surveillance tests are also being developed that can better gauge the long-term effects of tritium and its radioactive decay product, helium-3, on the properties of reservoir steels. In order to conduct these investigations, three types of samples are needed from returned reservoirs: tensile, fracture mechanics, and transmission-electron microscopy (TEM). An earlier report demonstrated how the electric-discharge machining (EDM) technique can be used for cutting tensile samples from serial sections of a 3T reservoir and how yield strength, ultimate strength and elongation could be measured from those samples. In this report, EDM was used successfully to section sub-sized fracture-mechanics samples from the inner and outer walls of a 3T reservoir and TEM samples from serial sections of a 1M reservoir. This report fulfills the requirements for the FY06 Level 3 milestone, TSR 15.1 ''Cut Fracture-Mechanics Samples from Tritium-Exposed Reservoir'' and TSR 15.2 ''Cut Transmission-electron-microscopy foils from Tritium-Exposed Reservoir'' for …
Date: August 31, 2006
Creator: Morgan, M; Ken Imrich, K & Michael Tosten, M
Object Type: Report
System: The UNT Digital Library
A Framework to Design and Optimize Chemical Flooding Processes (open access)

A Framework to Design and Optimize Chemical Flooding Processes

The goal of this proposed research is to provide an efficient and user friendly simulation framework for screening and optimizing chemical/microbial enhanced oil recovery processes. The framework will include (1) a user friendly interface to identify the variables that have the most impact on oil recovery using the concept of experimental design and response surface maps, (2) UTCHEM reservoir simulator to perform the numerical simulations, and (3) an economic model that automatically imports the simulation production data to evaluate the profitability of a particular design. Such a reservoir simulation framework is not currently available to the oil industry. The objectives of Task 1 are to develop three primary modules representing reservoir, chemical, and well data. The modules will be interfaced with an already available experimental design model. The objective of the Task 2 is to incorporate UTCHEM reservoir simulator and the modules with the strategic variables and developing the response surface maps to identify the significant variables from each module. The objective of the Task 3 is to develop the economic model designed specifically for the chemical processes targeted in this proposal and interface the economic model with UTCHEM production output. Task 4 is on the validation of the framework …
Date: August 31, 2006
Creator: Delshad, Mojdeh; Pope, Gary A. & Sepehrnoori, Kamy
Object Type: Report
System: The UNT Digital Library
A Framework to Design and Optimize Chemical Flooding Processes (open access)

A Framework to Design and Optimize Chemical Flooding Processes

The goal of this proposed research is to provide an efficient and user friendly simulation framework for screening and optimizing chemical/microbial enhanced oil recovery processes. The framework will include (1) a user friendly interface to identify the variables that have the most impact on oil recovery using the concept of experimental design and response surface maps, (2) UTCHEM reservoir simulator to perform the numerical simulations, and (3) an economic model that automatically imports the simulation production data to evaluate the profitability of a particular design. Such a reservoir simulation framework is not currently available to the oil industry. The objectives of Task 1 are to develop three primary modules representing reservoir, chemical, and well data. The modules will be interfaced with an already available experimental design model. The objective of the Task 2 is to incorporate UTCHEM reservoir simulator and the modules with the strategic variables and developing the response surface maps to identify the significant variables from each module. The objective of the Task 3 is to develop the economic model designed specifically for the chemical processes targeted in this proposal and interface the economic model with UTCHEM production output. Task 4 is on the validation of the framework …
Date: August 31, 2006
Creator: Delshad, Mojdeh; Pope, Gary A. & Sepehrnoori, Kamy
Object Type: Report
System: The UNT Digital Library
H(curl) Auxiliary Mesh Preconditioning (open access)

H(curl) Auxiliary Mesh Preconditioning

This paper analyzes a two-level preconditioning scheme for H(curl) bilinear forms. The scheme utilizes an auxiliary problem on a related mesh that is more amenable for constructing optimal order multigrid methods. More specifically, we analyze the case when the auxiliary mesh only approximately covers the original domain. The latter assumption is important since it allows for easy construction of nested multilevel spaces on regular auxiliary meshes. Numerical experiments in both two and three space dimensions illustrate the optimal performance of the method.
Date: August 31, 2006
Creator: Kolev, T V; Pasciak, J E & Vassilevski, P S
Object Type: Article
System: The UNT Digital Library
A High Efficiency Grazing Incidence Pumped X-ray Laser (open access)

A High Efficiency Grazing Incidence Pumped X-ray Laser

The main objective of the project is to demonstrate a proof-of-principle, new type of high efficiency, short wavelength x-ray laser source that will operate at unprecedented high repetition rates (10Hz) that could be scaled to 1kHz or higher. The development of a high average power, tabletop x-ray laser would serve to complement the wavelength range of 3rd and future 4th generation light sources, e.g. the LCLS, being developed by DOE-Basic Energy Sciences. The latter are large, expensive, central, synchrotron-based facilities while the tabletop x-ray laser is compact, high-power laser-driven, and relatively inexpensive. The demonstration of such a unique, ultra-fast source would allow us to attract funding from DOE-BES, NSF and other agencies to pursue probing of diverse materials undergoing ultrafast changes. Secondly, this capability would have a profound impact on the semiconductor industry since a coherent x-ray laser source would be ideal for ''at wavelength'' {approx}13 nm metrology and microscopy of optics and masks used in EUV lithography. The project has major technical challenges. We will perform grazing-incidence pumped laser-plasma experiments in flat or groove targets which are required to improve the pumping efficiency by ten times. Plasma density characterization using our existing unique picosecond x-ray laser interferometry of laser-irradiated …
Date: August 31, 2006
Creator: Dunn, J.; Keenan, R.; Price, D. F.; Patel, P. K.; Smith, R. F. & Shlyaptsev, V. N.
Object Type: Report
System: The UNT Digital Library
High-Precision Isotope Analysis Of Uranium And Thorium By Tims (open access)

High-Precision Isotope Analysis Of Uranium And Thorium By Tims

The U.S. Geological Survey (USGS) Yucca Mountain Project Branch laboratory in Denver, Colorado, conducts routine high-precision isotope analyses of uranium (U) and thorium (Th) using thermal ionization mass-spectrometry (TIMS). The measurements are conducted by a solid-source mass-spectrometer equipped with a Faraday multi-collector system and an energy filter in front of an active-film-type secondary electron multiplier (SEM). The abundance sensitivity of the instrument (signal at mass 237 over {sup 238}U in natural U) with the energy filter is {approx} 15 x 10{sup -9} and peak tails are reduced by a factor of {approx}100 relative to the Faraday cup measurements. Since instrument installation in April 2004, more than 500 rock and water samples have been analyzed in support of isotope-geochemical studies for the U.S. Department of Energy's Yucca Mountain Project. Isotope ratios of sub-nanogram to microgram U and Th samples are measured on graphite-coated single-filament and double-filament assemblies using zone-refined rhenium filaments. Ion beams less than 5 millivolt (mV) are measured with the SEM, which is corrected for non-linearity on the basis of measurements of National Institute of Standards and Technology (NIST) U-500 and 4321 B standards with ion beams ranging from 0.01 to 8 mV. Inter-calibration between the SEM and the …
Date: August 31, 2006
Creator: Neymark, L.A.
Object Type: Report
System: The UNT Digital Library
History Matching in Parallel Computational Environments (open access)

History Matching in Parallel Computational Environments

A novel methodology for delineating multiple reservoir domains for the purpose of history matching in a distributed computing environment has been proposed. A fully probabilistic approach to perturb permeability within the delineated zones is implemented. The combination of robust schemes for identifying reservoir zones and distributed computing significantly increase the accuracy and efficiency of the probabilistic approach. The information pertaining to the permeability variations in the reservoir that is contained in dynamic data is calibrated in terms of a deformation parameter rD. This information is merged with the prior geologic information in order to generate permeability models consistent with the observed dynamic data as well as the prior geology. The relationship between dynamic response data and reservoir attributes may vary in different regions of the reservoir due to spatial variations in reservoir attributes, well configuration, flow constrains etc. The probabilistic approach then has to account for multiple r{sub D} values in different regions of the reservoir. In order to delineate reservoir domains that can be characterized with different r{sub D} parameters, principal component analysis (PCA) of the Hessian matrix has been done. The Hessian matrix summarizes the sensitivity of the objective function at a given step of the history matching …
Date: August 31, 2006
Creator: Bryant, Steven; Srinivasan, Sanjay; Barrera, Alvaro; Kim, Yonghwee & Yadav, Sharad
Object Type: Report
System: The UNT Digital Library
Initiation and Persistence of Preferential Flow in Fractured Rocks (open access)

Initiation and Persistence of Preferential Flow in Fractured Rocks

To better understand preferential flow in fractured rock, we carried out an in situ field experiment in the underground Exploratory Studies Facility in the fractured Topopah Spring tuff at Yucca Mountain, Nevada. Ponded water (with a {approx}0.04 m head) was released onto a 3 x 4 m{sup 2} infiltration plot (divided into 12 square subplots) over a period of {approx}800 days. As water was released, spatial and temporal variability in infiltration rates was continuously monitored. In addition, changes in moisture content were monitored along horizontal boreholes located in the formation {approx} 19-22 m below. This experiment revealed peculiar infiltration patterns. In particular, we observed that in some of the subplots, the infiltration rate abruptly increased a few weeks into the infiltration tests before gradually decreasing, while in others a relatively low infiltration rate persisted for the duration of the experiment. Distinct flow zones, varying in flow velocity, wetted cross-sectional area, and extent of lateral movement, intercepted the monitoring boreholes. There was also evidence of water being diverted above the ceiling of a cavity in the immediate vicinity of the monitoring boreholes. Observations from this field experiment suggest that isolated conduits, each encompassing a large number of fractures, develop within the …
Date: August 31, 2006
Creator: Salve, Rohit; Ghezzehei, Teamrat A. & Jones, Robert
Object Type: Report
System: The UNT Digital Library
Interactions of Neutral Vanadium Oxide & Titanium Oxide Clusters with Sufur Dioxides, Nitrogen Oxides and Water (open access)

Interactions of Neutral Vanadium Oxide & Titanium Oxide Clusters with Sufur Dioxides, Nitrogen Oxides and Water

None
Date: August 31, 2006
Creator: Bernsteinq, Elliot R.
Object Type: Report
System: The UNT Digital Library
Investigation of Fly Ash and Activated Carbon Obtained from Pulverized Coal Boilers (open access)

Investigation of Fly Ash and Activated Carbon Obtained from Pulverized Coal Boilers

One of the techniques for Hg capture in coal-fired boilers involves injection of activated carbon (AC) into the boiler downstream of the air preheater. Hg is adsorbed onto the AC particles and fly ash, which are then both removed in an electrostatic precipitator or baghouse. This project addressed the issues of Hg on activated carbon and on fly ash from a materials re-use point of view. It also addressed the possible connection between SCR reactors, fly ash properties and Hg capture. The project has determined the feasibility of separating AC from fly ash in a fluidized bed and of regenerating the separated AC by heating the AC to elevated temperatures in a fluidized bed. The temperatures needed to drive off the Hg from the ash in a fluidized bed have also been determined. Finally, samples of fly ash from power plants with SCR reactors for NO{sub x} control have been analyzed in an effort to determine the effects of SCR on the ash.
Date: August 31, 2006
Creator: Levy, Edward K.; Kiely, Christopher & Yao, Zheng
Object Type: Report
System: The UNT Digital Library
JV 58-Effects of Biomass Combustion on SCR Catalyst (open access)

JV 58-Effects of Biomass Combustion on SCR Catalyst

A portable slipstream selective catalytic reduction (SCR) reactor was installed at a biomass cofired utility boiler to examine the rates and mechanisms of catalyst deactivation when exposed to biomass combustion products. The catalyst was found to deactivate at a much faster rate than typically found in a coal-fired boiler, although this may have been the result of high ash loading rather than a general property of biomass combustion. Deactivation was mainly the result of alkali and alkaline-earth sulfate formation and growth in catalyst pores, apparently caused by alkaline-earth ash deposition on or near the pore sites. The high proportion of biomass in the fuel contributed to elevated levels of alkali and alkaline-earth material in the ash when compared to coal ash, and these higher levels provided more opportunity for sulfate formation. Based on laboratory tests, neither catalyst material nor ammonia contributed measurably to ash mass gains via sulfation. A model constructed using both field and laboratory data was able to predict catalyst deactivation of catalysts under subbituminous coal firing but performed poorly at predicting catalyst deactivation under cofiring conditions. Because of the typically higher-than coal levels of alkali and alkaline-earth elements present in biomass fuels that are available for sulfation …
Date: August 31, 2006
Creator: Folkedahl, Bruce C.; Zygarlicke, Christopher J.; Strege, Joshua R.; McCollor, Donald P.; Laumb, Jason D. & Kong, Lingbu
Object Type: Report
System: The UNT Digital Library
Kinetic and Prediction of Hydrogen Outgassing from Lithium Hydride (open access)

Kinetic and Prediction of Hydrogen Outgassing from Lithium Hydride

In most industrial or device applications, LiH is placed in either an initially dry or a vacuum environment with other materials that may release moisture slowly over many months, years, or even decades. In such instances, the rate of hydrogen outgassing from the reaction of LiH with H{sub 2}O can be reasonably approximated by the rate at which H{sub 2}O is released from the moisture containing materials. In a vacuum or dry environment, LiOH decomposes slowly with time into Li{sub 2}O even at room temperature according to: 2LiOH(s) {yields} Li{sub 2}O(s) + H{sub 2}O(g) (1). The kinetics of the decomposition of LiOH depends on the dryness/vacuum level and temperature. It was discovered by different workers that vacuum thermal decomposition of bulk LiOH powder (grain sizes on the order of tens to hundreds of micrometers) into Li{sub 2}O follows a reaction front moving from the surface inward. Due to stress at the LiOH/vacuum interface and defective and missing crystalline bonding at surface sites, lattice vibrations at the surfaces/interfaces of most materials are at frequencies different than those in the bulk, a phenomenon observed in most solids. The chemical reactivity and electronic properties at surfaces and interfaces of materials are also different …
Date: August 31, 2006
Creator: Dinh, L. N.; Schildbach, M. A.; Smith, R. A.; Balazs, B. & McLean, W., II
Object Type: Article
System: The UNT Digital Library
Measurement of the 3He Spin Structure Functions in the Resonance Region: A Test of Quark-Hadron Duality on the Neutron (open access)

Measurement of the 3He Spin Structure Functions in the Resonance Region: A Test of Quark-Hadron Duality on the Neutron

One of the biggest challenges in the study of the nucleon structure is the understanding of the transition from partonic degrees of freedom to hadronic degrees of freedom. In 1970, Bloom and Gilman noticed that structure function data taken at SLAC in the resonance region average to the scaling curve of deep inelastic scattering (DIS). Early theoretical interpretations suggested that these two very different regimes can be linked under the condition that the quark-gluon and quark-quark interactions are suppressed. Substantial efforts are ongoing to investigate this phenomenon both experimentally and theoretically. Quark-hadron duality has been confirmed for the unpolarized structure function F{sub 2} of the proton and the deuteron using data from the experimental Hall C at Jefferson Lab (JLab). Indications of duality have been seen for the proton polarized structure function g{sub 1} and the virtual photon asymmetry A{sub 1} at JLab Hall B and HERMES. Because of the different resonance behavior, it is expected that the onset of duality for the neutron will happen at lower momentum transfer than for the proton. Now that precise spin structure data in the DIS region are available at large x, data in the resonance region are greatly needed in order to …
Date: August 31, 2006
Creator: Solvignon, Patricia
Object Type: Thesis or Dissertation
System: The UNT Digital Library
Molecular dissection of the roles of the SOD genes in mammalian response to low dose irradiation (open access)

Molecular dissection of the roles of the SOD genes in mammalian response to low dose irradiation

It has been long recognized that a significant fraction of the radiation-induced genetic damage to cells are caused by secondary oxidative species. Internal cellular defense systems against oxidative stress play significant roles in countering genetic damage induced by ionizing radiation. The role of the detoxifying enzymes may be even more prominent in the case of low-dose, low-LET irradiation, as the majority of genetic damage may be caused by secondary oxidative species. In this study we have attempted to decipher the roles of the superoxide dismutase (SOD) genes, which are responsible for detoxifying the superoxide anions. We used adenovirus vectors to deliver RNA interference (RNAi or siRNA) technology to down-regulate the expression levels of the SOD genes. We have also over-expressed the SOD genes by use of recombinant adenovirus vectors. Cells infected with the vectors were then subjected to low dose γ-irradiation. Total RNA were extracted from the exposed cells and the expression of 9000 genes were profiled by use of cDNA microarrays. The result showed that low dose radiation had clear effects on gene expression in HCT116 cells. Both over-expression and down-regulation of the SOD1 gene can change the expression profiles of sub-groups of genes. Close to 200 of the …
Date: August 31, 2006
Creator: Chuang, Eric Y.
Object Type: Report
System: The UNT Digital Library
A National Collaboratory to Advance the Science of High Temperature Plasma Physics for Magnetic Fusion (open access)

A National Collaboratory to Advance the Science of High Temperature Plasma Physics for Magnetic Fusion

This report summarizes the work of the National Fusion Collaboratory (NFC) Project funded by the United States Department of Energy (DOE) under the Scientific Discovery through Advanced Computing Program (SciDAC) to develop a persistent infrastructure to enable scientific collaboration for magnetic fusion research. A five year project that was initiated in 2001, it built on the past collaborative work performed within the U.S. fusion community and added the component of computer science research done with the USDOE Office of Science, Office of Advanced Scientific Computer Research. The project was a collaboration itself uniting fusion scientists from General Atomics, MIT, and PPPL and computer scientists from ANL, LBNL, Princeton University, and the University of Utah to form a coordinated team. The group leveraged existing computer science technology where possible and extended or created new capabilities where required. Developing a reliable energy system that is economically and environmentally sustainable is the long-term goal of Fusion Energy Science (FES) research. In the U.S., FES experimental research is centered at three large facilities with a replacement value of over $1B. As these experiments have increased in size and complexity, there has been a concurrent growth in the number and importance of collaborations among large …
Date: August 31, 2006
Creator: Schissel, D. P.; Abla, G.; Burruss, J. R.; Feibush, E.; Fredian, T. W.; Goode, M. M. et al.
Object Type: Report
System: The UNT Digital Library
A Novel Approach to Experimental Studies of Mineral Dissolution Kinetics (open access)

A Novel Approach to Experimental Studies of Mineral Dissolution Kinetics

Currently, DOE is conducting pilot CO{sub 2} injection tests to evaluate the concept of geological sequestration. One strategy that potentially enhances CO{sub 2} solubility and reduces the risk of CO{sub 2} leak back to the surface is dissolution of indigenous minerals in the geological formation and precipitation of secondary carbonate phases, which increases the brine pH and immobilizes CO{sub 2}. Clearly, the rates at which these dissolution and precipitation reactions occur directly determine the efficiency of this strategy. However, one of the fundamental problems in modern geochemistry is the persistent two to five orders of magnitude discrepancy between laboratory measured and field derived feldspar dissolution rates. To date, there is no real guidance as to how to predict silicate reaction rates for use in quantitative models. Current models for assessment of geological carbon sequestration have generally opted to use laboratory rates, in spite of the dearth of such data for compositionally complex systems, and the persistent disconnect between laboratory and field applications. Therefore, a firm scientific basis for predicting silicate reaction kinetics in CO2 injected geological formations is urgently needed to assure the reliability of the geochemical models used for the assessments of carbon sequestration strategies. The funded experimental and …
Date: August 31, 2006
Creator: Zhu, Chen
Object Type: Report
System: The UNT Digital Library
Palladium/Copper Alloy Composite Membranes for High Temperature Hydrogen Separation (open access)

Palladium/Copper Alloy Composite Membranes for High Temperature Hydrogen Separation

This report summarizes progress made during the a three year University Coal Research grant (DEFG26-03NT41792) at the Colorado School of Mines. The period of performance was September 1, 2003 through August of 2006. We made excellent progress toward our goal of contributing to the development of high productivity, sulfur tolerant composite metal membranes for hydrogen production and membrane reactors. Composite Pd and Pd alloy metal membranes with thin metal films (1-7 {micro}m) were prepared on porous stainless steel and ceramic supports that meet or exceed the DOE 2010 and 2015 pure hydrogen flux targets at differential pressure of only 20 psi. For example, a 2 {micro}m pure Pd membrane on a Pall AccuSep{reg_sign} substrate achieved an ideal H{sub 2}/N{sub 2} separation factor of over 6000, with a pure hydrogen flux of 210 SCFH/ft{sup 2} at only 20 psig feed pressure. Similar performance was achieved with a Pd{sub 80}Au{sub 20} composite membrane on a similar stainless steel substrate. Extrapolating the pure hydrogen flux of this PdAu membrane to the DOE Fossil Energy target conditions of 150 psia feed pressure and 50 psia permeate pressure gives a value of 508 SCFH/ft{sup 2}, exceeding the 2015 target. At these thicknesses, it is the …
Date: August 31, 2006
Creator: Way, J. Douglas & Thoen, Paul M.
Object Type: Report
System: The UNT Digital Library
Quantum Chemistry for Surface Segregation in Metal Alloys (open access)

Quantum Chemistry for Surface Segregation in Metal Alloys

Metal alloys are vital materials for the fabrication of high-flux, high-selectivity hydrogen separation membranes. A phenomenon that occurs in alloys that does not arise in pure metals is surface segregation, where the composition of the surface differs from the bulk composition. Little is known about the strength of surface segregation in the alloys usually considered for hydrogen membranes. Despite this lack of knowledge, surface segregation may play a decisive role in the ability of appropriately chosen alloys to be resistant to chemical poisoning, since membrane poisoning is controlled by surface chemistry. The aim of this Phase I project is to develop quantum chemistry approaches to assess surface segregation in a prototypical hydrogen membrane alloy, fcc Pd{sub 75}Cu{sub 25}. This alloy is known experimentally to have favorable surface properties as a poison resistant H{sub 2} purification membrane (Kamakoti et al., Science 307 (2005) 569-573), but previous efforts at modeling surfaces of this alloy have ignored the possible role of surface segregation (Alfonso et al., Surf. Sci. 546 (2003) 12-26).
Date: August 31, 2006
Creator: Sholl, David
Object Type: Report
System: The UNT Digital Library
Sensitivity Enhancement by Exchange Mediated MagnetizationTransfer of the Xenon Biosensor Signal (open access)

Sensitivity Enhancement by Exchange Mediated MagnetizationTransfer of the Xenon Biosensor Signal

Hyperpolarized xenon associated with ligand derivitized cryptophane-A cages has been developed as a NMR based biosensor. To optimize the detection sensitivity we describe use of xenon exchange between the caged and bulk dissolved xenon as an effective signal amplifier. This approach, somewhat analogous to 'remote detection' described recently, uses the chemical exchange to repeatedly transfer spectroscopic information from caged to bulk xenon, effectively integrating the caged signal. After an optimized integration period, the signal is read out by observation of the bulk magnetization. The spectrum of the caged xenon is reconstructed through use of a variable evolution period before transfer and Fourier analysis of the bulk signal as a function of the evolution time.
Date: August 31, 2006
Creator: Garcia, Sandra; Chavez, Lana; Lowery, Thomas J.; Han, Song-I; Wemmer, David E. & Pines, Alexander
Object Type: Article
System: The UNT Digital Library