The Synthesis, Characterization and Catalytic Reaction Studies ofMonodisperse Platinum Nanoparticles in Mesoporous Oxide Materials (open access)
Multipole Analysis of Circular Cylindircal Magnetic Systems (open access)

Multipole Analysis of Circular Cylindircal Magnetic Systems

This thesis deals with an alternate method for computing the external magnetic field from a circular cylindrical magnetic source. The primary objective is to characterize the magnetic source in terms of its equivalent multipole distribution. This multipole distribution must be valid at points close to the cylindrical source and a spherical multipole expansion is ill-equipped to handle this problem; therefore a new method must be introduced. This method, based upon the free-space Green's function in cylindrical coordinates, is developed as an alternative to the more familiar spherical harmonic expansion. A family of special functions, called the toroidal functions or Q-functions, are found to exhibit the necessary properties for analyzing circular cylindrical geometries. In particular, the toroidal function of zeroth order, which comes from the integral formulation of the free-space Green's function in cylindrical coordinates, is employed to handle magnetic sources which exhibit circular cylindrical symmetry. The toroidal functions, also called Q-functions, are the weighting coefficients in a ''Fourier series-like'' expansion which represents the free-space Green's function. It is also called a toroidal expansion. This expansion can be directly employed in electrostatic, magnetostatic, and electrodynamic problems which exhibit cylindrical symmetry. Also, it is shown that they can be used as an …
Date: January 9, 2006
Creator: Selvaggi, J
System: The UNT Digital Library
Measurement of the B meson Lifetimes with the Collider Detector at Fermilab (open access)

Measurement of the B meson Lifetimes with the Collider Detector at Fermilab

The lifetimes of the B{sup -}, B{sup 0} and B{sub s}{sup 0} mesons are measured using partially reconstructed semileptonic decays. Following semileptonic decay processes and their charge conjugates are used for this analysis: B{sup -}/B{sup 0} {yields} {ell}{sup -}{nu}D{sup 0}X; B{sup -}/B{sup 0} {yields} {ell}{sup -}{nu}D*{sup +}X; B{sub s}{sup 0} {yields} {ell}{sup -}{nu}D{sub s}{sup +}x, where {ell}{sup -} denotes either a muon or electron. The data are collected during 2002-2004 by the 8 GeV single lepton triggers in CDF Run II at the Fermilab Tevatron Collider. Corresponding integrated luminosity is about 260 and 360 pb{sup -1} used for the B{sup -}/B{sup 0} and B{sub s}{sup 0} lifetime analyses, respectively. With the single lepton triggers, events which contain a muon or electron with a transverse momentum greater than 8 GeV/c are selected. For these lepton candidates, further lepton identification cuts are applied to improve purity of the B semileptonic decay signal. After the lepton selection, three types of charm mesons associated with the lepton candidates are reconstructed. Following exclusive decay modes are used for the charm meson reconstruction: D{sup 0} {yields} K{sup -}{pi}{sup +}; D*{sup +} {yields} D{sup 0}{pi}{sub s}{sup +}, followed by D{sup 0} {yields} K{sup -}{pi}{sup +}; D{sub s}{sup …
Date: January 1, 2006
Creator: Uozumi, Satoru
System: The UNT Digital Library
Measurement of the front back asymmetry in top-antitop quark pairs produced in proton-antiproton collisions at center of mass energy = 1.96 TeV (open access)

Measurement of the front back asymmetry in top-antitop quark pairs produced in proton-antiproton collisions at center of mass energy = 1.96 TeV

Quarks, along with leptons and force carrying particles, are predicted by the Standard Model to be the fundamental constituents of nature. In distinction from the leptons, the quarks interact strongly through the chromodynamic force and are bound together within the hadrons. The familiar proton and neutron are bound states of the light ''up'' and ''down'' quarks. The most massive quark by far, the ''top'' quark, was discovered by the CDF and D0 experiments in March, 1995. The new quark was observed in p{bar p} collisions at 1.8 TeV at the Fermilab Tevatron. The mass of the top quark was measured to be 176 {+-} 13 GeV/c{sup 2} and the cross section 6.8{sub -2.4}{sup +3.6} pb. It is the Q = 2/3, T{sub 3} = +1/2 member of the third generation weak-isospin doublet along with the bottom quark. The top quark is the final Standard Model quark to be discovered. Along with whatever is responsible for electroweak symmetry breaking, top quark physics is considered one of the least understood sectors of the Standard Model and represents a front line of our understanding of particle physics. Currently, the only direct measurements of top quark properties come from the CDF and D0 experiments …
Date: January 1, 2006
Creator: Schwarz, Thomas A.
System: The UNT Digital Library
Search for anomalous production of events with a high energy lepton and photon at the Tevatron (open access)

Search for anomalous production of events with a high energy lepton and photon at the Tevatron

We present results of a search for the anomalous production of events containing a high-transverse momentum charged lepton ({ell}, either e or {mu}) and photon ({gamma}), accompanied by missing transverse energy (E{sub T}), and/or additional leptons and photons, and jets (X). We use the same kinematic selection criteria as in a previous CDF search, but with a substantially larger data set, 305 pb{sup -1}, a p{bar p} collision energy of 1.96 TeV, and the upgraded CDF II detector. We find 42 {ell}{gamma}E{sub T} events versus a standard model expectation of 37.3 {+-} 5.4 events. The level of excess observed in Run I, 16 events with an expectation of 7.6 {+-} 0.7 events (corresponding to a 2.7 {sigma} effect), is not supported by the new data. In the signature of {ell}{ell}{gamma} + X we observe 31 events versus an expectation of 23.0 {+-} 2.7 events. In this sample we find no events with an extra photon or E{sub T} and so find no events like the one ee{gamma}{gamma} E{sub T} event observed in Run I.
Date: January 1, 2006
Creator: Loginov, Andrey Borisovich & /Moscow, ITEP
System: The UNT Digital Library
A search for double-charged Higgs bosons at the Tevatron (open access)

A search for double-charged Higgs bosons at the Tevatron

We search for the pair production of doubly charged Higgs particles followed by the lepton-flavor violating decay of each Higgs into electron-and-tau and muon-and-tau pairs using 350 pb{sup -1} of data collected by the CDF II experiment at the Fermilab Tevatron. Separate searches investigate cases where three or four final state leptons are detected, and the limits for each exclusive decay mode reflect the combined results of both searches. Assuming the H{sup {+-}{+-}}{sub L} decays exclusively into like sign electron-and-tau pairs, we set a lower limit on its mass of 114 GeV/c2 at the 95 % confidence level. In the case of exclusive muon-and-tau decays, we set a lower mass limit of 112 GeV/c2 also at the 95% confidence level.
Date: January 1, 2006
Creator: Baraoiant, Sasha
System: The UNT Digital Library
Search for techniparticles at D0 Run II (open access)

Search for techniparticles at D0 Run II

Technicolor theory (TC) accomplishes the necessary electroweak symmetry breaking responsible for the mass of the elementary particles. TC postulates the existence of a new SU(N{sub TC}) gauge theory. Like QCD the exchange of gauge bosons causes the existence of a non-vanishing chiral condensate which dynamically breaks the SU(N{sub TC}){sub L} x SU(N{sub TC}){sub R} symmetry. This gives rise to N{sub TC}{sup 2}-1 Nambu-Goldstone Bosons. Three of these Goldstone Bosons become the longitudinal components of the W{sup {+-}} and Z which therefore acquire mass; the remaining ones are new particles (technihadrons) that can be produced at the high energy colliders and detected. The Technicolor Straw Man Model (TCSM) is a version of the dynamical symmetry breaking with a large number of technifermions and a relative low value of their masses. One of the processes predicted by the TCSM is q{bar q} {yields} V{sub T} {yields} W{pi}{sub T}, where V{sub T} is the Technicolor equivalent of the QCD vector meson and {pi}{sub T} is the equivalent of the pion. W is the electroweak gauge boson of the Standard Model. This dissertation describes the search for W{pi}{sub T} with the D0 detector, a multi-purpose particle detector located at one of the collision points …
Date: January 1, 2006
Creator: Feligioni, Lorenzo & U., /Boston
System: The UNT Digital Library
Search for the single top quarks produced in s-channel via electroweak interactions at s = 1-96 at the Tevatron (open access)

Search for the single top quarks produced in s-channel via electroweak interactions at s = 1-96 at the Tevatron

The authors present a search for single top quarks produced in the s-channel electroweak production mode. The search is performed in the electron+jets decay channels, with one or more secondary-vertex tagged jets to indicate the presence of a b-jet and hence improving the signal:background ratio. Separation between signal and background is further enhanced by the use of Feed Forward Neural networks. 360 pb{sup -1} of Run II data used for this analysis was delivered by the Tevatron, and collected by D0 between August 2002 and August 2004. The resulting 95% confidence level upper limit is 4 pb.
Date: January 1, 2006
Creator: Jabeen, Shabnam
System: The UNT Digital Library