95 Matching Results

Results open in a new window/tab.

Cascade effects on the polarization of He-like Fe 1s 2l - 1s2 X-ray line emission (open access)

Cascade effects on the polarization of He-like Fe 1s 2l - 1s2 X-ray line emission

We calculate X-ray line polarization degrees for cases with axial symmetry using a collisional-radiative magnetic-sublevel atomic kinetics model and the properties of multipole radiation fields. This approach is well-suited for problems where the alignment is determined by the competition between many atomic processes. We benchmark this method against polarization measurements performed at the Livermore electron beam ion trap, and we study the 3-to-2 cascade effects on the polarization of 2-to-1 lines in He-like Fe.
Date: December 21, 2006
Creator: Hakel, P; Mancini, R; Harris, C; Neill, P; Beiersdorfer, P; Csanak, G et al.
System: The UNT Digital Library
Dissociative electron attachment to the H2O molecule II: nucleardynamics on coupled electronic surfaces within the local complexpotential model (open access)

Dissociative electron attachment to the H2O molecule II: nucleardynamics on coupled electronic surfaces within the local complexpotential model

We report the results of a first-principles study of dissociative electron attachment (DEA) to H{sub 2}O. The cross sections were obtained from nuclear dynamics calculations carried out in full dimensionality within the local complex potential model by using the multi-configuration time-dependent Hartree method. The calculations employ our previously obtained global, complex-valued, potential energy surfaces for the three ({sup 2}B{sub 1}, {sup 2}A{sub 1}, and {sup 2}B{sub 2}) electronic Feshbach resonances involved in this process. These three metastable states of H{sub 2}O{sup -} undergo several degeneracies, and we incorporate both the Renner-Teller coupling between the {sup 2}B{sub 1} and {sup 2}A{sub 1} states, as well as the conical intersection between the {sup 2}A{sub 1} and {sup 2}B{sub 2} states, into our treatment. The nuclear dynamics are inherently multi-dimensional and involve branching between different final product arrangements as well as extensive excitation of the diatomic fragment. Our results successfully mirror the qualitative features of the major fragment channels observed, but are less successful in reproducing the available results for some of the minor channels. We comment on the applicability of the local complex potential model to such a complicated resonant system.
Date: December 21, 2006
Creator: Haxton, Daniel J.; Rescigno, Thomas N. & McCurdy, C. William
System: The UNT Digital Library
FRACTIONAL CRYSTALLIZATION OF HANFORD SINGLE SHELL TANK (SST) WASTES A MODELING APPROACH (open access)

FRACTIONAL CRYSTALLIZATION OF HANFORD SINGLE SHELL TANK (SST) WASTES A MODELING APPROACH

The Hanford site has 149 underground single-shell tanks (SST) storing mostly soluble, multi-salt, mixed wastes resulting from Cold War era weapons material production. These wastes must be retrieved and the salts immobilized before the tanks can be closed to comply with an overall site closure consent order entered into by the U.S. Department of Energy (DOE), the Environmental Protection Agency, and Washington State. Water will be used to retrieve the wastes and the resulting solution will be pumped to the proposed treatment process where a high curie (primarily {sup 137}Cs) waste fraction will be separated from the other waste constituents. The separated waste streams will then be vitrified to allow for safe storage as an immobilized high level waste, or low level waste, borosilicate glass. Fractional crystallization, a common unit operation for production of industrial chemicals and pharmaceuticals, was proposed as the method to separate the salt wastes; it works by evaporating excess water until the solubilities of various species in the solution are exceeded (the solubility of a particular species depends on its concentration, temperature of the solution, and the presence of other ionic species in the solution). By establishing the proper conditions, selected pure salts can be crystallized …
Date: December 21, 2006
Creator: HAMILTON, D.W.
System: The UNT Digital Library
Hierarchy of multiple many-body interaction scales in high-temperature superconductors (open access)

Hierarchy of multiple many-body interaction scales in high-temperature superconductors

To date, angle-resolved photoemission spectroscopy has been successful in identifying energy scales of the many-body interactions in correlated materials, focused on binding energies of up to a few hundred meV below the Fermi energy. Here, at higher energy scale, we present improved experimental data from four families of high-T{sub c} superconductors over a wide doping range that reveal a hierarchy of many-body interaction scales focused on: the low energy anomaly ('kink') of 0.03-0.09eV, a high energy anomaly of 0.3-0.5eV, and an anomalous enhancement of the width of the LDA-based CuO{sub 2} band extending to energies of {approx} 2 eV. Besides their universal behavior over the families, we find that all of these three dispersion anomalies also show clear doping dependence over the doping range presented.
Date: December 21, 2006
Creator: Hussain, Zahid; Meevasana, W.; Zhou, X. J.; Sahrakorpi, S.; Lee, W. S.; Yang, W. L. et al.
System: The UNT Digital Library
An Innovative Method for Dynamic Characterization of Fan FilterUnit Operation. (open access)

An Innovative Method for Dynamic Characterization of Fan FilterUnit Operation.

Fan filter units (FFU) are widely used to deliver re-circulated air while providing filtration control of particle concentration in controlled environments such as cleanrooms, minienvironments, and operating rooms in hospitals. The objective of this paper is to document an innovative method for characterizing operation and control of an individual fan filter unit within its operable conditions. Built upon the draft laboratory method previously published [1] , this paper presents an updated method including a testing procedure to characterize dynamic operation of fan filter units, i.e., steady-state operation conditions determined by varied control schemes, airflow rates, and pressure differential across the units. The parameters for dynamic characterization include total electric power demand, total pressure efficiency, airflow rate, pressure differential across fan filter units, and airflow uniformity.
Date: December 21, 2006
Creator: Xu, Tengfang
System: The UNT Digital Library
A multigroup radiation diffusion test problem: Comparison of code results with analytic solution (open access)

A multigroup radiation diffusion test problem: Comparison of code results with analytic solution

We consider a 1D, slab-symmetric test problem for the multigroup radiation diffusion and matter energy balance equations. The test simulates diffusion of energy from a hot central region. Opacities vary with the cube of the frequency and radiation emission is given by a Wien spectrum. We compare results from two LLNL codes, Raptor and Lasnex, with tabular data that define the analytic solution.
Date: December 21, 2006
Creator: Shestakov, A I; Harte, J A; Bolstad, J H & Offner, S R
System: The UNT Digital Library
Novel Laser-Based Manufacturing of nano-LiFePO4-Based Materialsfor High Power Li Ion Batteries (open access)

Novel Laser-Based Manufacturing of nano-LiFePO4-Based Materialsfor High Power Li Ion Batteries

None
Date: December 21, 2006
Creator: Horne, Craig R.; Jaiswal, Abhishek; Chang, On; Crane, S.; Doeff,Marca M. & Wang, Emile
System: The UNT Digital Library
Observation of hyperfine mixing in measurements of a magnetic octupole decay in isotopically pure nickel-like 129Xe and 132Xe ions (open access)

Observation of hyperfine mixing in measurements of a magnetic octupole decay in isotopically pure nickel-like 129Xe and 132Xe ions

We present measurements of high statistical significance of the rate of the magnetic octupole (M3) decay in nickel-like ions of isotopically pure {sup 129}Xe and {sup 132}Xe. On {sup 132}Xe, an isotope with zero nuclear spin and therefore without hyperfine structure, the lifetime of the metastable level was established as (15.06 {+-} 0.24) ms. On {sup 129}Xe, an additional fast (2.7 {+-} 0.1 ms) decay component was established that represents hyperfine mixing with a level that decays by electric quadrupole (E2) radiation.
Date: December 21, 2006
Creator: Trabert, E; Beiersdorfer, P & Brown, G V
System: The UNT Digital Library
Photonic Equation of Motion With Application to the Lamb Shift (open access)

Photonic Equation of Motion With Application to the Lamb Shift

A photonic equation of motion is proposed which is the scalar product of four-vectors and therefore a Lorentz invariant. A photonic equation of motion, which has not been heretofore established in quantum electrodynamics (QED), would capture the quantum nature of light but yet not have the standard field-operator form, thereby making practical calculations easier to perform. The equation of motion proposed here is applied to the Lamb shift. No divergences exist, and the result agrees with the observed Lamb shift for the 1S{sub 1/2} state of hydrogen within experimental error.
Date: December 21, 2006
Creator: Ritchie, A. B.
System: The UNT Digital Library
Portable, Low-cost NMR with Laser-Lathe Lithography Produced (open access)

Portable, Low-cost NMR with Laser-Lathe Lithography Produced

Nuclear Magnetic Resonance (NMR) is unsurpassed in its ability to non-destructively probe chemical identity. Portable, low-cost NMR sensors would enable on-site identification of potentially hazardous substances, as well as the study of samples in a variety of industrial applications. Recent developments in RF microcoil construction (i.e. coils much smaller than the standard 5 mm NMR RF coils), have dramatically increased NMR sensitivity and decreased the limits-of-detection (LOD). We are using advances in laser pantographic microfabrication techniques, unique to LLNL, to produce RF microcoils for field deployable, high sensitivity NMR-based detectors. This same fabrication technique can be used to produce imaging coils for MRI as well as for standard hardware shimming or 'ex-situ' shimming of field inhomogeneities typically associated with inexpensive magnets. This paper describes a portable NMR system based on a laser-fabricated microcoil and homebuilt probe design. For testing this probe, we used a hand-held 2 kg Halbach magnet that can fit into the palm of a hand, and an RF probe with laser-fabricated microcoils. The focus of the paper is on the evaluation of the microcoils, RF probe, and first generation gradient coils. The setup of this system, initial results, sensitivity measurements, and future plans are discussed. The results, …
Date: December 21, 2006
Creator: Herberg, J. L.; Demas, V.; Malba, V.; Bernhardt, A.; Evans, L.; Harvey, C. et al.
System: The UNT Digital Library
Properties of Ellipticity Correlation with Atmospheric Structure from Gemini South (open access)

Properties of Ellipticity Correlation with Atmospheric Structure from Gemini South

Cosmic shear holds great promise for a precision independent measurement of {Omega}{sub m}, the mass density of the universe relative to the critical density. The signal is expected to be weak, so a thorough understanding of systematic effects is crucial. An important systematic effect is the atmosphere: shear power introduced by the atmosphere is larger than the expected signal. Algorithms exist to extract the cosmic shear from the atmospheric component, though a measure of their success applied to a range of seeing conditions is lacking. To gain insight into atmospheric shear, Gemini South imaging in conjunction with ground condition and satellite wind data were obtained. We find that under good seeing conditions Point-Spread-Function (PSF) correlations persist well beyond the separation typical of high-latitude stars. Under these conditions, ellipticity residuals based on a simple PSF interpolation can be reduced to within a factor of a few of the shot-noise induced ellipticity floor. We also find that the ellipticity residuals are highly correlated with wind direction. Finally, we correct stellar shapes using a more sophisticated procedure and generate shear statistics from stars. Under all seeing conditions in our data set the residual correlations lie everywhere below the target signal level. For good …
Date: December 21, 2006
Creator: Asztalos, S. J.; Treadway, T.; de Vries, W. H.; Rosenberg, L. J.; Burke, D.; Claver, C. et al.
System: The UNT Digital Library
Simulations of high yield air bursts using gray and multigroup diffusion; Comparison of Raptor and Lasnex (open access)

Simulations of high yield air bursts using gray and multigroup diffusion; Comparison of Raptor and Lasnex

None
Date: December 21, 2006
Creator: Shestakov, A & Nilsen, V
System: The UNT Digital Library
DEMOLITION OF HANFORDS 232-Z WASTE INCINERATION FACILITY (open access)

DEMOLITION OF HANFORDS 232-Z WASTE INCINERATION FACILITY

The 232-Z Plutonium Incinerator Facility was a small, highly alpha-contaminated, building situated between three active buildings located in an operating nuclear complex. Approximately 500 personnel worked within 250 meters (800 ft) of the structure and expectations were that the project would neither impact plant operations nor result in any restrictions when demolition was complete. Precision demolition and tight controls best describe the project. The team used standard open-air demolition techniques to take the facility to slab-on-grade. Several techniques were key to controlling contamination and confining it to the demolition area: spraying fixatives before demolition began; using misting systems, frequently applying fixatives, and using a methodical demolition sequence and debris load-out process. Detailed air modeling was done before demolition to determine necessary facility source-term levels, establish radiological boundaries, and confirm the adequacy of the proposed demolition approach. By only removing the major source term in equipment, HEPA filters, gloveboxes, and the like, and leaving fixed contamination on the walls, ceilings and floors, the project showed considerable savings and reduced worker hazards and exposure. The ability to perform this demolition safely and without the spread of contamination provides confidence that similar operations can be performed successfully. By removing the major source terms, …
Date: November 21, 2006
Creator: LLOYD, E.R.
System: The UNT Digital Library
K-alpha conversion efficiency measurments for x-ray scattering in inertial confinement fusion plasmas (open access)

K-alpha conversion efficiency measurments for x-ray scattering in inertial confinement fusion plasmas

The conversion efficiency of ultra short-pulse laser radiation to K-{alpha} x-rays has been measured for various chlorine-containing targets to be used as x-ray scattering probes of dense plasmas. The spectral and temporal properties of these sources will allow spectrally-resolved x-ray scattering probing with picosecond temporal resolution required for measuring the plasma conditions in inertial confinement fusion experiments. Simulations of x-ray scattering spectra from these plasmas show that fuel capsule density, capsule ablator density, and shock timing information may be inferred.
Date: November 21, 2006
Creator: Kritcher, A L; Neumayer, P; Urry, M K; Robey, H; Niemann, C; Landen, O L et al.
System: The UNT Digital Library
Thomson scattering from near-solid density plasmas using soft x-ray free electron lasers (open access)

Thomson scattering from near-solid density plasmas using soft x-ray free electron lasers

We propose a collective Thomson scattering experiment at the VUV free electron laser facility at DESY (FLASH) which aims to diagnose warm dense matter at near-solid density. The plasma region of interest marks the transition from an ideal plasma to a correlated and degenerate many-particle system and is of current interest, e.g. in ICF experiments or laboratory astrophysics. Plasma diagnostic of such plasmas is a longstanding issue. The collective electron plasma mode (plasmon) is revealed in a pump-probe scattering experiment using the high-brilliant radiation to probe the plasma. The distinctive scattering features allow to infer basic plasma properties. For plasmas in thermal equilibrium the electron density and temperature is determined from scattering off the plasmon mode.
Date: November 21, 2006
Creator: Holl, A; Bornath, T; Cao, L; Doppner, T; Dusterer, S; Forster, E et al.
System: The UNT Digital Library
Azimuthal and single spin asymmetry in deep-inelasticlepton-nucleon scattering (open access)

Azimuthal and single spin asymmetry in deep-inelasticlepton-nucleon scattering

The collinear expansion technique is generalized to thefactorization of unintegrated parton distributions and other higher twistparton correlations from the corresponding collinear hard parts thatinvolve multiple parton final state interaction. Such a generalizedfactorization provides a consistent approach to the calculation ofinclusive and semi-inclusive cross sections of deep-inelasticlepton-nucleon scattering. As an example, the azimuthal asymmetry iscalculated to the order of 1/Q in semi-inclusive deeply inelasticlepton-nucleon scattering with transversely polarized target. Anon-vanishing single-spin asymmetry in the "triggered inclusive process"is predicted to be 1/Q suppressed with a part of the coefficient relatedto a moment of the Sivers function.
Date: September 21, 2006
Creator: Liang, Zuo-tang & Wang, Xin-Nian
System: The UNT Digital Library
China Spallation Neutron Source Project: Design Iterations and R and D Status (open access)

China Spallation Neutron Source Project: Design Iterations and R and D Status

The China Spallation Neutron Source (CSNS) is an accelerator based high power project currently under preparation in China. The accelerator complex is based on an H{sup -} linear accelerator and a rapid cycling proton synchrotron. During the past year, the design of most accelerator systems went through major iterations, and initial research and developments were started on the prototyping of several key components. This paper summarizes major activities of the past year.
Date: September 21, 2006
Creator: Wei, J.
System: The UNT Digital Library
Coherent X-ray Production by Cascading Stages of High Gain Harmonic Generation Free Electron Lasers Seeded by IR Laser Driven High-Order Harmonic Generation (open access)
Electron Signal Detection for the Beam-Finder Wire of the Linac Coherent Light Source Undulator (open access)

Electron Signal Detection for the Beam-Finder Wire of the Linac Coherent Light Source Undulator

The Linac Coherent Light Source (LCLS) is a SASE x-ray Free-Electron Laser (FEL) based on the final kilometer of the Stanford Linear Accelerator. The tight tolerances for positioning the electron beam close to the undulator axis calls for the introduction of Beam Finder Wire (BFW) device. A BFW device close to the upstream end of the undulator segment and a quadrupole close to the down stream end of the undulator segment will allow a beam-based undulator segment alignment. Based on the scattering of the electrons on the BFW, we can detect the electron signal in the main dump bends after the undulator to find the beam position. We propose to use a threshold Cherenkov counter for this purpose. According to the signal strength at such a Cherenkov counter, we then suggest choice of material and size for such a BFW device in the undulator.
Date: September 21, 2006
Creator: Wu, Juhao; Emma, P. & Field, R.C.
System: The UNT Digital Library
Explosive Nucleosynthesis in GRB Jets Accompanied by Hypernovae (open access)

Explosive Nucleosynthesis in GRB Jets Accompanied by Hypernovae

Two-dimensional hydrodynamic simulations are performed to investigate explosive nucleosynthesis in a collapsar using the model of MacFadyen and Woosley (1999). It is shown that {sup 56}Ni is not produced in the jet of the collapsar sufficiently to explain the observed amount of a hypernova when the duration of the explosion is {approx} 10 sec, which is considered to be the typical timescale of explosion in the collapsar model. Even though a considerable amount of {sup 56}Ni is synthesized if all explosion energy is deposited initially, the opening angles of the jets become too wide to realize highly relativistic outflows and gamma-ray bursts in such a case. From these results, it is concluded that the origin of {sup 56}Ni in hypernovae associated with GRBs is not the explosive nucleosynthesis in the jet. We consider that the idea that the origin is the explosive nucleosynthesis in the accretion disk is more promising. We also show that the explosion becomes bi-polar naturally due to the effect of the deformed progenitor. This fact suggests that the {sup 56}Ni synthesized in the accretion disk and conveyed as outflows are blown along to the rotation axis, which will explain the line features of SN 1998bw and …
Date: September 21, 2006
Creator: Nagataki, Shigehiro; /Kyoto U., Yukawa Inst., Kyoto /KIPAC, Menlo Park; Mizuta, Akira; /Garching, Max Planck Inst.; Sato, Katsuhiko & /Tokyo U. /Tokyo U., RESCEU
System: The UNT Digital Library
Folded Supersymmetry and the LDP Paradox (open access)

Folded Supersymmetry and the LDP Paradox

We present a new class of models that stabilize the weak scale against radiative corrections up to scales of order 5 TeV without large corrections to precision electroweak observables. In these ''folded supersymmetric'' theories the one loop quadratic divergences of the Standard Model Higgs field are canceled by opposite spin partners, but the gauge quantum numbers of these new particles are in general different from those of the conventional superpartners. This class of models is built around the correspondence that exists in the large N limit between the correlation functions of supersymmetric theories and those of their non-supersymmetric orbifold daughters. By identifying the mechanism which underlies the cancellation of one loop quadratic divergences in these theories, we are able to construct simple extensions of the Standard Model which are radiatively stable at one loop. Ultraviolet completions of these theories can be obtained by imposing suitable boundary conditions on an appropriate supersymmetric higher dimensional theory compactified down to four dimensions. We construct a specific model based on these ideas which stabilizes the weak scale up to about 20 TeV and where the states which cancel the top loop are scalars not charged under Standard Model color. Its collider signatures are distinct …
Date: September 21, 2006
Creator: Burdman, Gustavo; Chacko, Z.; Goh, Hock-Seng & Harnik, Roni
System: The UNT Digital Library
Metal Plasmas for the Fabrication of Nanostructures (open access)

Metal Plasmas for the Fabrication of Nanostructures

A review is provided covering metal plasma production, theenergetic condensation of metal plasmas, and the formation ofnanostructures using such plasmas. Plasma production techniques includepulsed laser ablation, filtered cathodic arcs, and various forms ofionized physical vapor deposition, namely magnetron sputtering withionization of sputtered atoms in radio frequency discharges,self-sputtering, and high power impulse magnetron sputtering. Thediscussion of energetic condensation focuses on the control of kineticenergy by biasing and also includes considerations of the potentialenergy and the processes occurring at subplantation and implantation. Inthe final section on nanostructures, two different approaches arediscussed. In the top-down approach, the primary nanostructures arelithographically produced and metal plasma is used to coat or filltrenches and vias. Additionally, multilayers with nanosize periods(nanolaminates) can be produced. In the bottom-up approach, thermodynamicforces are used to fabricate nanocomposites and nanoporous materials bydecomposition and dealloying.
Date: September 21, 2006
Creator: Anders, Andre
System: The UNT Digital Library
A Multigroup diffusion solver using pseudo transient continuation for a radiation-hydrodynamic code with patch-based AMR (open access)

A Multigroup diffusion solver using pseudo transient continuation for a radiation-hydrodynamic code with patch-based AMR

We present a scheme to solve the nonlinear multigroup radiation diffusion (MGD) equations. The method is incorporated into a massively parallel, multidimensional, Eulerian radiation-hydrodynamic code with adaptive mesh refinement (AMR). The patch-based AMR algorithm refines in both space and time creating a hierarchy of levels, coarsest to finest. The physics modules are time-advanced using operator splitting. On each level, separate 'level-solve' packages advance the modules. Our multigroup level-solve adapts an implicit procedure which leads to a two-step iterative scheme that alternates between elliptic solves for each group with intra-cell group coupling. For robustness, we introduce pseudo transient continuation ({Psi}tc). We analyze the magnitude of the {Psi}tc parameter to ensure positivity of the resulting linear system, diagonal dominance and convergence of the two-step scheme. For AMR, a level defines a subdomain for refinement. For diffusive processes such as MGD, the refined level uses Dirichet boundary data at the coarse-fine interface and the data is derived from the coarse level solution. After advancing on the fine level, an additional procedure, the sync-solve (SS), is required in order to enforce conservation. The MGD SS reduces to an elliptic solve on a combined grid for a system of G equations, where G is the …
Date: September 21, 2006
Creator: Shestakov, A I & Offner, S R
System: The UNT Digital Library
Prospects of High Energy Laboratory Astrophysics (open access)

Prospects of High Energy Laboratory Astrophysics

Ultra high energy cosmic rays (UHECR) have been observed but their sources and production mechanisms are yet to be understood. We envision a laboratory astrophysics program that will contribute to the understanding of cosmic accelerators with efforts to: (1) test and calibrate UHECR observational techniques, and (2) elucidate the underlying physics of cosmic acceleration through laboratory experiments and computer simulations. Innovative experiments belonging to the first category have already been done at the SLAC FFTB. Results on air fluorescence yields from the FLASH experiment are reviewed. Proposed future accelerator facilities can provided unprecedented high-energy-densities in a regime relevant to cosmic acceleration studies and accessible in a terrestrial environment for the first time. We review recent simulation studies of nonlinear plasma dynamics that could give rise to cosmic acceleration, and discuss prospects for experimental investigation of the underlying mechanisms.
Date: September 21, 2006
Creator: Ng, J. S. T. & Chen, P.
System: The UNT Digital Library