Resource Type

3,923 Matching Results

Results open in a new window/tab.

An Acoustic Wave Equation for Tilted Transversely Isotropic Media (open access)

An Acoustic Wave Equation for Tilted Transversely Isotropic Media

A finite-difference method for computing the first arrival traveltimes by solving the Eikonal equation in the celerity domain has been developed. This algorithm incorporates the head and diffraction wave. We also adapt a fast sweeping method, which is extremely simple to implement in any number of dimensions, to obtain accurate first arrival times in complex velocity models. The method, which is stable and computationally efficient, can handle instabilities due to caustics and provide head waves traveltimes. Numerical examples demonstrate that the celerity-domain Eikonal solver provides accurate first arrival traveltimes. This new method is three times accurate more than the 2nd-order fast marching method in a linear velocity model with the same spacing.
Date: March 15, 2005
Creator: Zhang, Linbin; Rector, James W., III & Hoversten, G. Michael
System: The UNT Digital Library
Actinic inspection of multilayer defects on EUV masks (open access)

Actinic inspection of multilayer defects on EUV masks

The production of defect-free mask blanks, and the development of techniques for inspecting and qualifying EUV mask blanks, remains a key challenge for EUV lithography. In order to ensure a reliable supply of defect-free mask blanks, it is necessary to develop techniques to reliably and accurately detect defects on un-patterned mask blanks. These inspection tools must be able to accurately detect all critical defects whilst simultaneously having the minimum possible false-positive detection rate. There continues to be improvement in high-speed non-actinic mask blank inspection tools, and it is anticipated that these tools can and will be used by industry to qualify EUV mask blanks. However, the outstanding question remains one of validating that non-actinic inspection techniques are capable of detecting all printable EUV defects. To qualify the performance of non-actinic inspection tools, a unique dual-mode EUV mask inspection system has been installed at the Advanced Light Source (ALS) synchrotron at Lawrence Berkeley National Laboratory. In high-speed inspection mode, whole mask blanks are scanned for defects using 13.5-nm wavelength light to identify and map all locations on the mask that scatter a significant amount of EUV light. In imaging, or defect review mode, a zone plate is placed in the reflected …
Date: March 24, 2005
Creator: Barty, A.; Liu, Y.; Gullikson, E.; Taylor, J. S. & Wood, O.
System: The UNT Digital Library
Actinide Thermodynamics at Higher Temperatures (open access)

Actinide Thermodynamics at Higher Temperatures

This report is about the Actinide Thermodynamics at Higher Temperatures
Date: February 9, 2005
Creator: Friese, J.
System: The UNT Digital Library
Activated type I TGFbeta receptor (Alk5) kinase confers enhancedsurvival to mammary epithelial cells and accelerates mammary tumorprogression (open access)

Activated type I TGFbeta receptor (Alk5) kinase confers enhancedsurvival to mammary epithelial cells and accelerates mammary tumorprogression

The transforming growth factor-betas (TGF{beta}s) are members of a large superfamily of pleiotropic cytokines that also includes the activins and the bone morphogenetic proteins (BMPs). Members of the TGF{beta} family regulate complex physiological processes such cell proliferation, differentiation, adhesion, cell-cell and cell-matrix interactions, motility, and cell death, among others (Massague, 1998). Dysregulation of TGF{beta} signaling contributes to several pathological processes including cancer, fibrosis, and auto-immune disorders (Massague et al., 2000). The TGF{beta}s elicit their biological effects by binding to type II and type I transmembrane receptor serine-threonine kinases (T{beta}RII and T{beta}RI) which, in turn, phosphorylated Smad 2 and Smad 3. Phosphorylated Smad 2/3 associate with Smad 4 and, as a heteromeric complex, translocate to the nucleus where they regulate gene transcription. The inhibitory Smad7 down regulates TGF{beta} signaling by binding to activated T{beta}RI and interfering with its ability to phosphorylate Smad 2/3 (Derynck and Zhang, 2003; Shi and Massague, 2003). Signaling is also regulated by Smad proteolysis. TGF{beta} receptor-mediated activation results in multi-ubiquitination of Smad 2 in the nucleus and subsequent degradation of Smad 2 by the proteasome (Lo and Massague, 1999). Activation of TGF{beta} receptors also induces mobilization of a Smad 7-Smurf complex from the nucleus to the cytoplasm; …
Date: January 2, 2005
Creator: Muraoka-Cook, Rebecca S.; Shin, Incheol; Yi, Jae Youn; Easterly,Evangeline; Barcellos-Hoff, Mary Helen; Yingling, Jonathan M. et al.
System: The UNT Digital Library
Activation Energy for Grain Growth in Bismuth Coatings (open access)

Activation Energy for Grain Growth in Bismuth Coatings

The knowledge of both activation energy and diffusion coefficient is needed for a predictive processing of grain size in coatings. However, for metals as Bismuth there is insufficient information available in the literature for these parameters. To determine these values, a method is adopted wherein an examination of the grain size is conducted for coatings deposited isothermally. The exponent for grain growth with time is determined, thereby enabling quantification of the activation energy and diffusion coefficient. Bismuth coatings that range from 10 {micro}m to 1 mm thick are deposited using electron-beam evaporation onto temperature-controlled substrate surfaces of glass and lithium fluoride. The grain size of each coating is measured upon examination of the microstructure in cross-section using the intercept method. Ideal grain growth is observed over the experimental range of deposition temperatures examined from 317 to 491 K. The activation energy (Q) for grain growth in bismuth is fit as 0.47 eV {center_dot} atom{sup -1} with a diffusion coefficient (D{sub 0}) of 3.3 x 10{sup -4} cm{sup 2} {center_dot} sec{sup -1}.
Date: September 9, 2005
Creator: Jankowski, Alan Frederic; Hayes, Jeffrey P.; Smith, R. F.; Reed, B. W.; Kumar, M. & Colvin, J. D.
System: The UNT Digital Library
Active Control for Statistically Stationary Turbulent PremixedFlame Simulations (open access)

Active Control for Statistically Stationary Turbulent PremixedFlame Simulations

The speed of propagation of a premixed turbulent flame correlates with the intensity of the turbulence encountered by the flame. One consequence of this property is that premixed flames in both laboratory experiments and practical combustors require some type of stabilization mechanism to prevent blow-off and flashback. The stabilization devices often introduce a level of geometric complexity that is prohibitive for detailed computational studies of turbulent flame dynamics. Furthermore, the stabilization introduces additional fluid mechanical complexity into the overall combustion process that can complicate the analysis of fundamental flame properties. To circumvent these difficulties we introduce a feedback control algorithm that allows us to computationally stabilize a turbulent premixed flame in a simple geometric configuration. For the simulations, we specify turbulent inflow conditions and dynamically adjust the integrated fueling rate to control the mean location of the flame in the domain. We outline the numerical procedure, and illustrate the behavior of the control algorithm on methane flames at various equivalence ratios in two dimensions. The simulation data are used to study the local variation in the speed of propagation due to flame surface curvature.
Date: August 30, 2005
Creator: Bell, J. B.; Day, M. S.; Grcar, J. F. & Lijewski, M. J.
System: The UNT Digital Library
Active Nuclear Material Detection and Imaging (open access)

Active Nuclear Material Detection and Imaging

An experimental evaluation has been conducted to assess the operational performance of a coded-aperture, thermal neutron imaging system and its detection and imaging capability for shielded nuclear material in pulsed photonuclear environments. This evaluation used an imaging system developed by Brookhaven National Laboratory. The active photonuclear environment was produced by an operationallyflexible, Idaho National Laboratory (INL) pulsed electron accelerator. The neutron environments were monitored using INL photonuclear neutron detectors. Results include experimental images, operational imaging system assessments and recommendations that would enhance nuclear material detection and imaging performance.
Date: October 1, 2005
Creator: Norman, Daren; Jones, James; KevinHaskell; Vanmier, Peter E. & Forman, Leon
System: The UNT Digital Library
An Active Region Model for Capturing Fractal Flow Patterns inUnsaturated Soils: Model Development (open access)

An Active Region Model for Capturing Fractal Flow Patterns inUnsaturated Soils: Model Development

Preferential flow commonly observed in unsaturated soils allows rapid movement of solute from the soil surface or vadose zone to the groundwater, bypassing a significant volume of unsaturated soil and increasing the risk of groundwater contamination. A variety of evidence indicates that complex preferential patterns observed from fields are fractals. In this study, we developed a relatively simple active region model to incorporate the fractal flow pattern into the continuum approach. In the model, the flow domain is divided into active and inactive regions. Flow occurs preferentially in the active region (characterized by fractals), and inactive region is simply bypassed. A new constitutive relationship (the portion of the active region as a function of saturation) was derived. The validity of the proposed model is demonstrated by the consistency between field observations and the new constitutive relationship.
Date: June 11, 2005
Creator: Liu, Hui-Hai; Zhang, R. & Bodvarsson, Gudmundur S.
System: The UNT Digital Library
An Active Region Model for Capturing Fractal Flow Patterns inUnsaturated Soils: Model Development (open access)

An Active Region Model for Capturing Fractal Flow Patterns inUnsaturated Soils: Model Development

This report describes the development of a simple active region model to incorporate the fractal flow pattern into the continuum approach.
Date: June 11, 2005
Creator: Liu, Hui-Hai; Zhang, R. & Bodvarsson, Gudmundur S.
System: The UNT Digital Library
Adaptive mesh refinement in titanium (open access)

Adaptive mesh refinement in titanium

In this paper, we evaluate Titanium's usability as a high-level parallel programming language through a case study, where we implement a subset of Chombo's functionality in Titanium. Chombo is a software package applying the Adaptive Mesh Refinement methodology to numerical Partial Differential Equations at the production level. In Chombo, the library approach is used to parallel programming (C++ and Fortran, with MPI), whereas Titanium is a Java dialect designed for high-performance scientific computing. The performance of our implementation is studied and compared with that of Chombo in solving Poisson's equation based on two grid configurations from a real application. Also provided are the counts of lines of code from both sides.
Date: January 21, 2005
Creator: Colella, Phillip & Wen, Tong
System: The UNT Digital Library
Adaptive Perturbation Theory: Quantum Mechanics and Field Theory (open access)

Adaptive Perturbation Theory: Quantum Mechanics and Field Theory

Adaptive perturbation is a new method for perturbatively computing the eigenvalues and eigenstates of quantum mechanical Hamiltonians that are widely believed not to be solvable by such methods. The novel feature of adaptive perturbation theory is that it decomposes a given Hamiltonian, H, into an unperturbed part and a perturbation in a way which extracts the leading non-perturbative behavior of the problem exactly. In this talk I will introduce the method in the context of the pure anharmonic oscillator and then apply it to the case of tunneling between symmetric minima. After that, I will show how this method can be applied to field theory. In that discussion I will show how one can non-perturbatively extract the structure of mass, wavefunction and coupling constant renormalization.
Date: October 19, 2005
Creator: Weinstein, Marvin
System: The UNT Digital Library
Adaptive Urban Dispersion Integrated Model (open access)

Adaptive Urban Dispersion Integrated Model

Numerical simulations represent a unique predictive tool for understanding the three-dimensional flow fields and associated concentration distributions from contaminant releases in complex urban settings (Britter and Hanna 2003). Utilization of the most accurate urban models, based on fully three-dimensional computational fluid dynamics (CFD) that solve the Navier-Stokes equations with incorporated turbulence models, presents many challenges. We address two in this work; first, a fast but accurate way to incorporate the complex urban terrain, buildings, and other structures to enforce proper boundary conditions in the flow solution; second, ways to achieve a level of computational efficiency that allows the models to be run in an automated fashion such that they may be used for emergency response and event reconstruction applications. We have developed a new integrated urban dispersion modeling capability based on FEM3MP (Gresho and Chan 1998, Chan and Stevens 2000), a CFD model from Lawrence Livermore National Lab. The integrated capability incorporates fast embedded boundary mesh generation for geometrically complex problems and full three-dimensional Cartesian adaptive mesh refinement (AMR). Parallel AMR and embedded boundary gridding support are provided through the SAMRAI library (Wissink et al. 2001, Hornung and Kohn 2002). Embedded boundary mesh generation has been demonstrated to be an …
Date: November 3, 2005
Creator: Wissink, A; Chand, K; Kosovic, B; Chan, S; Berger, M & Chow, F K
System: The UNT Digital Library
Adsorption of biometals to monosodium titanate in biological environments (open access)

Adsorption of biometals to monosodium titanate in biological environments

Monosodium titanate (MST) is an inorganic sorbent/ion exchanger developed for the removal of radionuclides from nuclear wastes. We investigated the ability of MST to bind Cd(II), Hg(II), or Au(III) to establish the utility of MST for applications in environmental decontamination or medical therapy (drug delivery). Adsorption isotherms for MST were determined at pH 7-7.5 in water or phosphate-buffered saline. The extent of metal binding was determined spectroscopically by measuring the concentrations of the metals in solution before and after contact with the MST. Cytotoxic responses to MST were assessed using THP1 monocytes and succinate dehydrogenase activity. Monocytic activation by MST was assessed by TNF{alpha} secretion (ELISA) with or without lipopolysaccharide (LPS) activation. MST sorbed Cd(II), Hg(II), and Au(III) under conditions similar to that in physiological systems. MST exhibited the highest affinity for Cd(II) followed by Hg(II) and Au (III). MST (up to 100 mg/L) exhibited only minor (< 25% suppression of succinate dehydrogenase) cytotoxicity and did not trigger TNF{alpha} secretion nor modulate LPS-induced TNF{alpha} secretion from monocytes. MST exhibits high affinity for biometals with no significant biological liabilities in these introductory studies. MST deserves further scrutiny as a substance with the capacity to decontaminate biological environments or deliver metals in …
Date: June 6, 2005
Creator: Hobbs, D. T.; Messer, R. L. W.; Lewis, J. B.; Click, D. R. Lockwood, P. E. & Wataha, J. C.
System: The UNT Digital Library
Adsorption of lanthanum to goethite in the presence of gluconate (open access)

Adsorption of lanthanum to goethite in the presence of gluconate

Adsorption of Lanthanum to Goethite in the Presence of Gluconic Acid L. C. HULL,1 S. E. PEPPER2 AND S. B. CLARK2 1Idaho National Engineering and Environmental Laboratory, Idaho Falls, ID (hulllc@inel.gov) 2Washington State University, Pullman, WA (spepper@wsu.edu), (s_clark@wsu.edu) Lanthanide and trivalent-actinide elements in radioactive waste can pose risks to humans and ecological systems for many years. Organic complexing agents, from natural organic matter or the degradation of waste package components, can alter the mobility of these elements. We studied the effect of gluconic acid, as an analogue for cellulose degradation products, on the adsorption of lanthanum, representing lanthanide and trivalent-actinide elments, to goethite, representing natural iron minearals and degradation products of waste packages. Batch pH adsorption edge experiments were conducted with lanthanum alone, and with lanthanum and gluconate at a 1:1 mole ratio. Lanthanum concentrations studied were 0.1, 1, and 10 mM, covering a range from 10% to 1000% of the calculated available adsorption sites on goethite. In the absence of gluconate, lanthanum was primarily present in solution as free lanthanum ion. With gluconate present, free lanthanum concentration in solution decreased with increasing pH as step-wise deprotonation of the gluconate molecule increased the fraction lanthanum complexed with gluconate. Adsorption to …
Date: May 1, 2005
Creator: Hull, Laurence C.; Pepper, Sarah & Clark, Sue
System: The UNT Digital Library
Advanced 0.3-NA EUV lithography capabilities at the ALS (open access)

Advanced 0.3-NA EUV lithography capabilities at the ALS

For volume nanoelectronics production using Extreme ultraviolet (EUV) lithography [1] to become a reality around the year 2011, advanced EUV research tools are required today. Microfield exposure tools have played a vital role in the early development of EUV lithography [2-4] concentrating on numerical apertures (NA) of 0.2 and smaller. Expected to enter production at the 32-nm node with NAs of 0.25, EUV can no longer rely on these early research tools to provide relevant learning. To overcome this problem, a new generation of microfield exposure tools, operating at an NA of 0.3 have been developed [5-8]. Like their predecessors, these tools trade off field size and speed for greatly reduced complexity. One of these tools is implemented at Lawrence Berkeley National Laboratory's Advanced Light Source synchrotron radiation facility. This tool gets around the problem of the intrinsically high coherence of the synchrotron source [9,10] by using an active illuminator scheme [11]. Here we describe recent printing results obtained from the Berkeley EUV exposure tool. Limited by the availability of ultra-high resolution chemically amplified resists, present resolution limits are approximately 32 nm for equal lines and spaces and 27 nm for semi-isolated lines.
Date: July 7, 2005
Creator: Naulleau, Patrick; Anderson, Erik; Dean, Kim; Denham, Paul; Goldberg, Kenneth A.; Hoef, Brian et al.
System: The UNT Digital Library
Advanced Control Technologies and Strategies Linking DemandResponse and Energy Efficiency (open access)

Advanced Control Technologies and Strategies Linking DemandResponse and Energy Efficiency

This paper presents a preliminary framework to describe how advanced controls can support multiple modes of operations including both energy efficiency and demand response (DR). A general description of DR, its benefits, and nationwide status is outlined. The role of energy management and control systems for DR is described. Building systems such as HVAC and lighting that utilize control technologies and strategies for energy efficiency are mapped on to DR and demand shedding strategies are developed. Past research projects are presented to provide a context for the current projects. The economic case for implementing DR from a building owner perspective is also explored.
Date: September 2, 2005
Creator: Kiliccote, Sila & Piette, Mary Ann
System: The UNT Digital Library
Advanced Electric and Magnetic Material Models for FDTD Electromagnetic Codes (open access)

Advanced Electric and Magnetic Material Models for FDTD Electromagnetic Codes

The modeling of dielectric and magnetic materials in the time domain is required for pulse power applications, pulsed induction accelerators, and advanced transmission lines. For example, most induction accelerator modules require the use of magnetic materials to provide adequate Volt-sec during the acceleration pulse. These models require hysteresis and saturation to simulate the saturation wavefront in a multipulse environment. In high voltage transmission line applications such as shock or soliton lines the dielectric is operating in a highly nonlinear regime, which require nonlinear models. Simple 1-D models are developed for fast parameterization of transmission line structures. In the case of nonlinear dielectrics, a simple analytic model describing the permittivity in terms of electric field is used in a 3-D finite difference time domain code (FDTD). In the case of magnetic materials, both rate independent and rate dependent Hodgdon magnetic material models have been implemented into 3-D FDTD codes and 1-D codes.
Date: May 5, 2005
Creator: Poole, B. R.; Nelson, S. D. & Langdon, S.
System: The UNT Digital Library
Advanced Heat Transfer and Thermal Storage Fluids (open access)

Advanced Heat Transfer and Thermal Storage Fluids

The design of the next generation solar parabolic trough systems for power production will require the development of new thermal energy storage options with improved economics or operational characteristics. Current heat-transfer fluids such as VP-1?, which consists of a eutectic mixture of biphenyl and diphenyl oxide, allow a maximum operating temperature of ca. 300 C, a limit above which the vapor pressure would become too high and would require pressure-rated tanks. The use of VP-1? also suffers from a freezing point around 13 C that requires heating during cold periods. One of the goals for future trough systems is the use of heat-transfer fluids that can act as thermal storage media and that allow operating temperatures around 425 C combined with lower limits around 0 C. This paper presents an outline of our latest approach toward the development of such thermal storage fluids.
Date: January 1, 2005
Creator: Moens, L. & Blake, D.
System: The UNT Digital Library
Advanced Indoor Module Light-Soaking Facility (open access)

Advanced Indoor Module Light-Soaking Facility

An overview of the accelerated, indoor light-soaking test station is presented in this paper, along with data obtained for six modules that underwent exposure. The station comprises a climate-controlled chamber equipped with a solar simulator that allows 1-sun light intensity exposure. Concurrently, we monitor the electrical characteristics of multiple PV modules and exercise active control over their electrical bias using programmable electronic loads, interfaced to a data acquisition system that acquires power-tracking and current-voltage data. This capability allows us to the test different bias conditions and to cyclically alternate between them. Additionally, we can vary the light intensity and module temperatures to garner realistic temperature coefficients of module performance. Data obtained on cadmium telluride (CdTe) and amorphous silicon (a-Si) modules are presented.
Date: January 1, 2005
Creator: del Cueto, J. A.; Osterwald, C. & Pruett, J.
System: The UNT Digital Library
Advanced Intermediate Heat Transport Loop Design Configurations for Hydrogen Production Using High Temperature Nuclear Reactors (open access)

Advanced Intermediate Heat Transport Loop Design Configurations for Hydrogen Production Using High Temperature Nuclear Reactors

The US Department of Energy is investigating the use of high-temperature nuclear reactors to produce hydrogen using either thermochemical cycles or high-temperature electrolysis. Although the hydrogen production processes are in an early stage of development, coupling either of these processes to the high-temperature reactor requires both efficient heat transfer and adequate separation of the facilities to assure that off-normal events in the production facility do not impact the nuclear power plant. An intermediate heat transport loop will be required to separate the operations and safety functions of the nuclear and hydrogen plants. A next generation high-temperature reactor could be envisioned as a single-purpose facility that produces hydrogen or a dual-purpose facility that produces hydrogen and electricity. Early plants, such as the proposed Next Generation Nuclear Plant (NGNP), may be dual-purpose facilities that demonstrate both hydrogen and efficient electrical generation. Later plants could be single-purpose facilities. At this stage of development, both single- and dual-purpose facilities need to be understood. A number of possible configurations for a system that transfers heat between the nuclear reactor and the hydrogen and/or electrical generation plants were identified. These configurations included both direct and indirect cycles for the production of electricity. Both helium and liquid …
Date: November 1, 2005
Creator: Oh, Chang; Davis, Cliff; Barner, Rober & Pickard, Paul
System: The UNT Digital Library
Advanced Off-Gas Control System Design For Radioactive And Mixed Waste Treatment (open access)

Advanced Off-Gas Control System Design For Radioactive And Mixed Waste Treatment

Treatment of radioactive and mixed wastes is often required to destroy or immobilize hazardous constituents, reduce waste volume, and convert the waste to a form suitable for final disposal. These kinds of treatments usually evolve off-gas. Air emission regulations have become increasingly stringent in recent years. Mixed waste thermal treatment in the United States is now generally regulated under the Hazardous Waste Combustor (HWC) Maximum Achievable Control Technology (MACT) standards. These standards impose unprecedented requirements for operation, monitoring and control, and emissions control. Off-gas control technologies and system designs that were satisfactorily proven in mixed waste operation prior to the implementation of new regulatory standards are in some cases no longer suitable in new mixed waste treatment system designs. Some mixed waste treatment facilities have been shut down rather than have excessively restrictive feed rate limits or facility upgrades to comply with the new standards. New mixed waste treatment facilities in the U. S. are being designed to operate in compliance with the HWC MACT standards. Activities have been underway for the past 10 years at the INL and elsewhere to identify, develop, demonstrate, and design technologies for enabling HWC MACT compliance for mixed waste treatment facilities. Some specific off-gas …
Date: September 1, 2005
Creator: Soelberg, Nick
System: The UNT Digital Library
Advanced Techniques for In-Situ Monitoring of Phase Transformations During Welding Using Synchrotron-Based X-Ray Diffraction (open access)

Advanced Techniques for In-Situ Monitoring of Phase Transformations During Welding Using Synchrotron-Based X-Ray Diffraction

Understanding the evolution of microstructure in welds is an important goal of welding research because of the strong correlation between weld microstructure and weld properties. To achieve this goal it is important to develop a quantitative measure of phase transformations encountered during welding in order to ultimately develop methods for predicting weld microstructures from the characteristics of the welding process. To aid in this effort, synchrotron radiation methods have been developed at Lawrence Livermore National Laboratory (LLNL) for direct observation of microstructure evolution during welding. Using intense, highly collimated synchrotron radiation, the atomic structure of the weld heat affected and fusion zones can be probed in real time. Two synchrotron-based techniques, known as spatially resolved (SRXRD) and time resolved (TRXRD) x-ray diffraction, have been developed for these investigations. These techniques have now been used to investigate welding induced phase transformations in titanium alloys, low alloy steels, and stainless steel alloys. This paper will provide a brief overview of these methods and will discuss microstructural evolution during the welding of low carbon (AISI 1005) and medium carbon (AISI 1045) steels where the different levels of carbon influence the evolution of microstructures during welding.
Date: June 5, 2005
Creator: Elmer, J. W.; Palmer, T. A.; Zhang, W. & DebRoy, T.
System: The UNT Digital Library
ADVANCED TECHNOLOGIES FOR THE SIMULTANEOUS SEPARATION OF CESIUM AND STRONTIUM FROM SPENT NUCLEAR FUEL (open access)

ADVANCED TECHNOLOGIES FOR THE SIMULTANEOUS SEPARATION OF CESIUM AND STRONTIUM FROM SPENT NUCLEAR FUEL

Two new solvent extraction technologies have been recently developed to simultaneously separate cesium and strontium from spent nuclear fuel, following dissolution in nitric acid. The first process utilizes a solvent consisting of chlorinated cobalt dicarbollide and polyethylene glycol extractants in a phenyltrifluoromethyl sulfone diluent. Recent improvements to the process include development of a new, non-nitroaromatic diluent and development of new stripping reagents, including a regenerable strip reagent that can be recovered and recycled. This new strip reagent reduces product volume by a factor of 20, over the baseline process. Countercurrent flowsheet tests on simulated spent nuclear fuel feed streams have been performed with both cesium and strontium removal efficiencies of greater than 99 %. The second process developed to simultaneously separate cesium and strontium from spent nuclear fuel is based on two highly-specific extractants: 4',4',(5')-Di-(t-butyldicyclo-hexano)-18-crown-6 (DtBuCH18C6) and Calix[4]arene-bis-(tert-octylbenzo-crown-6) (BOBCalixC6). The DtBuCH18C6 extractant is selective for strontium and the BOBCalixC6 extractant is selective for cesium. A solvent composition has been developed that enables both elements to be removed together and, in fact, a synergistic effect was observed with strontium distributions in the combined solvent that are much higher that in the strontium extraction (SREX) process. Initial laboratory test results of the …
Date: February 1, 2005
Creator: Law, Jack D.; Todd, Terry A.; Herbst, R. Scott; Meikrantz, David H.; Peterman, Dean R.; Riddle, Catherine L. et al.
System: The UNT Digital Library
Advanced Test Reactor Capabilities and Future Operating Plans (open access)

Advanced Test Reactor Capabilities and Future Operating Plans

The Advanced Test Reactor (ATR), at the Idaho National Laboratory (INL), is one of the world’s premier test reactors for providing the capability for studying the effects of intense neutron and gamma radiation on reactor materials and fuels. The physical configuration of the ATR, a 4-leaf clover shape, allows the reactor to be operated at different power levels in the corner “lobes” to allow for different testing conditions for multiple simultaneous experiments. The combination of high flux (maximum thermal neutron fluxes of 1E15 neutrons per square centimeter per second and maximum fast [E>1.0 MeV] neutron fluxes of 5E14 neutrons per square centimeter per second) and large test volumes (up to 48" long and 5.0" diameter) provide unique testing opportunities. The current experiments in the ATR are for a variety of test sponsors - US government, foreign governments, private researchers, and commercial companies needing neutron irradiation services. There are three basic types of test configurations in the ATR. The simplest configuration is the sealed static capsule, wherein the target material is placed in a capsule, or plate form, and the capsule is in direct contact with the primary coolant. The next level of complexity of an experiment is an instrumented lead …
Date: September 1, 2005
Creator: Marshall, Frances M.
System: The UNT Digital Library