Resource Type

3,923 Matching Results

Results open in a new window/tab.

Using Laser Entrance Hole Shields to Increase Coupling Efficiency in Indirect Drive Ignition Targets for the National Ignition Facility (NIF) (open access)

Using Laser Entrance Hole Shields to Increase Coupling Efficiency in Indirect Drive Ignition Targets for the National Ignition Facility (NIF)

Coupling efficiency, the ratio of the capsule absorbed energy to the driver energy, is a key parameter in ignition targets. The hohlraum originally proposed for NIF coupled {approx}11% of the absorbed laser energy to the capsule as x-rays. We describe here a second generation of hohlraum target which has higher coupling efficiency, {approx}16%. Because the ignition capsule's ability to withstand 3D effects increases rapidly with absorbed energy, the additional energy can significantly increase the likelihood of ignition. The new target includes laser entrance hole (LEH) shields as a principal method for increasing coupling efficiency while controlling symmetry in indirect-drive ICF. The LEH shields are high Z disks placed inside the hohlraum to block the capsule's view of the cold LEHs. The LEH shields can reduce the amount of laser energy required to drive a target to a given temperature via two mechanisms: (1) keeping the temperature high near the capsule pole by putting a barrier between the capsule and the pole, (2) because the capsule pole does not have a view of the cold LEHs, good symmetry requires a shorter hohlraum with less wall area. Current integrated simulations of this class of target couple 140 kJ of x-rays to a …
Date: November 3, 2005
Creator: Callahan, D. A.; Amendt, P. A.; Dewald, E. L.; Haan, S. W.; Hinkel, D. E.; Izumi, N. et al.
System: The UNT Digital Library
Data Association and Bullet Tracking Algorithms for the Fight Sight Experiment (open access)

Data Association and Bullet Tracking Algorithms for the Fight Sight Experiment

Previous LLNL investigators developed a bullet and projectile tracking system over a decade ago. Renewed interest in the technology has spawned research that culminated in a live-fire experiment, called Fight Sight, in September 2005. The experiment was more complex than previous LLNL bullet tracking experiments in that it included multiple shooters with simultaneous fire, new sensor-shooter geometries, large amounts of optical clutter, and greatly increased sensor-shooter distances. This presentation describes the data association and tracking algorithms for the Fight Sight experiment. Image processing applied to the imagery yields a sequence of bullet features which are input to a data association routine. The data association routine matches features with existing tracks, or initializes new tracks as needed. A Kalman filter is used to smooth and extrapolate existing tracks. The Kalman filter is also used to back-track bullets to their point of origin, thereby revealing the location of the shooter. It also provides an error ellipse for each shooter, quantifying the uncertainty of shooter location. In addition to describing the data association and tracking algorithms, several examples from the Fight Sight experiment are also presented.
Date: October 7, 2005
Creator: Breitfeller, E & Roberts, R
System: The UNT Digital Library
How an antenna launches its input power into radiation: thepattern of the Poynting vector at and near an antenna (open access)

How an antenna launches its input power into radiation: thepattern of the Poynting vector at and near an antenna

In this paper I first address the question of whether theseat of the power radiated by an antenna made of conducting members isdistributed over the "arms" of the antenna according to $ - \bf J \cdotE$, where $\bf J$ is the specified current density and $\bf E$ is theelectric field produced by that source. Poynting's theorem permits only aglobal identification of the total input power, usually from a localizedgenerator, with the total power radiated to infinity, not a localcorrespondence of $- \bf J \cdot E\ d^3x $ with some specific radiatedpower, $r^2 \bf S \cdot \hat r\ d\Omega $. I then describe a modelantenna consisting of two perfectly conducting hemispheres of radius\emph a separated by a small equatorial gap across which occurs thedriving oscillatory electric field. The fields and surface current aredetermined by solution of the boundary value problem. In contrast to thefirst approach (not a boundary value problem), the tangential electricfield vanishes on the metallic surface. There is no radial Poyntingvector at the surface. Numerical examples are shown to illustrate how theenergy flows from the input region of the gap and is guided near theantenna by its "arms" until it is launched at larger \emph r/a into theradiation pattern …
Date: May 18, 2005
Creator: Jackson, J.D.
System: The UNT Digital Library
Establishing Ergonomics in Industrially Developing Countries (open access)

Establishing Ergonomics in Industrially Developing Countries

The introduction of ergonomics is an ongoing effort in industrially developing countries and will ultimately require an organized, programmatic approach spanning several countries and organizations. Our preliminary efforts with our partner countries of Viet Nam, Thailand, and Nicaragua have demonstrated that a one-time course is just the first step in a series of necessary events to provide skills and create an infrastructure that will have lasting impact for the host country. To facilitate that any sort of training has a lasting impact, it is recommended that host countries establish a 'contract' with class participants and the guest instructors for at least one follow-up visit so instructors can see the progress and support the participants in current and future efforts. With repeated exchanges, the class participants can become the 'in country experts' and the next generation of ergonomic trainers. Additionally, providing participants with an easy to use hazard assessment tool and methods for evaluating the financial impact of the project (cost/benefit analysis) will assist increase the likelihood of success and establish a foundation for future projects. In the future, developing trade and regionally/culturally specific 'ergonomics toolkits' can help promote broader implementation, especially where training resources may be limited.
Date: August 29, 2005
Creator: Stewart, K.; Silverstein, B. & Kiefer, M.
System: The UNT Digital Library
DIII-D Diagnostic Systems (open access)

DIII-D Diagnostic Systems

None
Date: October 12, 2005
Creator: Boivin, R. L.; Luxon, J. L.; Austin, M. E.; Brooks, N. H.; Burrell, K. H.; Doyle, E. J. et al.
System: The UNT Digital Library
Large Releases from CO2 Storage Reservoirs: A Discussion ofNatural Analogs, FEPS, and Modeling Needs (open access)

Large Releases from CO2 Storage Reservoirs: A Discussion ofNatural Analogs, FEPS, and Modeling Needs

While the purpose of geologic storage in deep saline formations is to trap greenhouse gases underground, the potential exists for CO{sub 2} to escape from the target reservoir, migrate upward along permeable pathways, and discharge at the land surface. In this paper, we evaluate the potential for such CO{sub 2} discharges based on the analysis of natural analogs, where large releases of gas have been observed. We are particularly interested in circumstances that could generate sudden, possibly self-enhancing release events. The probability for such events may be low, but the circumstances under which they occur and the potential consequences need to be evaluated in order to design appropriate site-selection and risk-management strategies. Numerical modeling of hypothetical test cases is suggested to determine critical conditions for large CO{sub 2} releases, to evaluate whether such conditions may be possible at designated storage sites, and, if applicable, to evaluate the potential impacts of such events as well as design appropriate mitigation strategies.
Date: November 1, 2005
Creator: Birkholzer, J.; Pruess, K.; Lewicki, J. L.; Rutqvist, J.; Tsang, C-F. & Karimjee, A.
System: The UNT Digital Library
Methane Hydrate Formation and Dissociation in a PartiallySaturated Core-Scale Sand Sample (open access)

Methane Hydrate Formation and Dissociation in a PartiallySaturated Core-Scale Sand Sample

We performed a sequence of tests on a partiallywater-saturated sand sample contained in an x-ray transparent aluminumpressure vessel that is conducive to x-ray computed tomography (CT)observation. These tests were performed to gather data for estimation ofthermal properties of the sand/water/gas system and thesand/hydrate/water/gas systems, as well as data to evaluate the kineticnature of hydrate dissociation. The tests included mild thermalperturbations for the estimation of the thermal properties of thesand/water/gas system, hydrate formation, thermal perturbations withhydrate in the stability zone, hydrate dissociation through thermalstimulation, additional hydrate formation, and hydrate dissociationthrough depressurization with thermal stimulation. Density changesthroughout the sample were observed as a result of hydrate formation anddissociation, and these processes induced capillary pressure changes thataltered local water saturation.
Date: November 3, 2005
Creator: Kneafsey, Timothy J.; Tomutsa, Liviu; Moridis, George J.; Seol,Yongkoo; Freifeld, Barry M.; Taylor, Charles E. et al.
System: The UNT Digital Library
Patch-based Adaptive Mesh Refinement for Multimaterial Hydrodynamics (open access)

Patch-based Adaptive Mesh Refinement for Multimaterial Hydrodynamics

We present a patch-based direct Eulerian adaptive mesh refinement (AMR) algorithm for modeling real equation-of-state, multimaterial compressible flow with strength. Our approach to AMR uses a hierarchical, structured grid approach first developed by (Berger and Oliger 1984), (Berger and Oliger 1984). The grid structure is dynamic in time and is composed of nested uniform rectangular grids of varying resolution. The integration scheme on the grid hierarchy is a recursive procedure in which the coarse grids are advanced, then the fine grids are advanced multiple steps to reach the same time, and finally the coarse and fine grids are synchronized to remove conservation errors during the separate advances. The methodology presented here is based on a single grid algorithm developed for multimaterial gas dynamics by (Colella et al. 1993), refined by(Greenough et al. 1995), and extended to the solution of solid mechanics problems with significant strength by (Lomov and Rubin 2003). The single grid algorithm uses a second-order Godunov scheme with an approximate single fluid Riemann solver and a volume-of-fluid treatment of material interfaces. The method also uses a non-conservative treatment of the deformation tensor and an acoustic approximation for shear waves in the Riemann solver. This departure from a strict …
Date: October 18, 2005
Creator: Lomov, I; Pember, R; Greenough, J & Liu, B
System: The UNT Digital Library
Nanometer-scale imaging and pore-scale fluid flow modeling inchalk (open access)

Nanometer-scale imaging and pore-scale fluid flow modeling inchalk

For many rocks of high economic interest such as chalk,diatomite, tight gas sands or coal, nanometer scale resolution is neededto resolve the 3D-pore structure, which controls the flow and trapping offluids in the rocks. Such resolutions cannot be achieved with existingtomographic technologies. A new 3D imaging method, based on serialsectioning and using the Focused Ion Beam (FIB) technology has beendeveloped. FIB allows for the milling of layers as thin as 10 nanometersby using accelerated Ga+ ions to sputter atoms from the sample surface.After each milling step, as a new surface is exposed, a 2D image of thissurface is generated. Next, the 2D images are stacked to reconstruct the3D pore or grain structure. Resolutions as high as 10 nm are achievableusing this technique. A new image processing method uses directmorphological analysis of the pore space to characterize thepetrophysical properties of diverse formations. In addition to estimationof the petrophysical properties (porosity, permeability, relativepermeability and capillary pressures), the method is used for simulationof fluid displacement processes, such as those encountered in variousimproved oil recovery (IOR) approaches. Computed with the new methodcapillary pressure curves are in good agreement with laboratory data. Themethod has also been applied for visualization of the fluid distributionat various saturations …
Date: August 23, 2005
Creator: Tomutsa, Liviu; Silin, Dmitriy & Radmilovich, Velimir
System: The UNT Digital Library
Risk Assessment Using The Homeland-Defense Operational Planning System (HOPS) (open access)

Risk Assessment Using The Homeland-Defense Operational Planning System (HOPS)

The Homeland-Defense Operational Planning System (HOPS), is a new operational planning tool leveraging Lawrence Livermore National Laboratory's expertise in weapons systems and in sparse information analysis to support the defense of the U.S. homeland. HOPS provides planners with a basis to make decisions to protect against acts of terrorism, focusing on the defense of facilities critical to U.S. infrastructure. Criticality of facilities, structures, and systems is evaluated on a composite matrix of specific projected casualty, economic, and sociopolitical impact bins. Based on these criteria, significant unidentified vulnerabilities are identified and secured. To provide insight into potential successes by malevolent actors, HOPS analysts strive to base their efforts mainly on unclassified open-source data. However, more cooperation is needed between HOPS analysts and facility representatives to provide an advantage to those whose task is to defend these facilities. Evaluated facilities include: refineries, major ports, nuclear power plants and other nuclear licensees, dams, government installations, convention centers, sports stadiums, tourist venues, and public and freight transportation systems. A generalized summary of analyses of U.S. infrastructure facilities will be presented.
Date: October 10, 2005
Creator: Price, D E & Durling, R L
System: The UNT Digital Library
Saturation of CVD Diamond Detectors (open access)

Saturation of CVD Diamond Detectors

A 5 x 0.25 mm Chemical Vapor Deposited (CVD) diamond detector, with a voltage bias of + 250V, was excited by a 400 nm laser (3.1 eV photons) in order to study the saturation of the wafer and its surrounding electronics. In a first experiment, the laser beam energy was increased from a few tens of a pJ to about 100 µJ, and the signal from the diamond was recorded until full saturation of the detection system was achieved. Clear saturation of the detection system was observed at about 40 V, which corresponds with the expected saturation at 10% of the applied bias (250V). The results indicate that the interaction mechanism of the 3.1 eV photons in the diamond (Ebandgap = 5.45 eV) is not a multi-photon process but is linked to the impurities and defects of the crystal. In a second experiment, the detector was irradiated by a saturating first laser pulse and then by a delayed laser pulse of equal or smaller amplitude with delays of 5, 10, and 20 ns. The results suggest that the diamond and associated electronics recover within 10 to 20 ns after a strong saturating pulse.
Date: January 1, 2005
Creator: Dauffy, Lucile S.; Lerche, Richard A.; Schmid, Greg J.; Koch, Jeffrey A. & Silbernagel, Christopher
System: The UNT Digital Library
Using Visualization in Cockpit Decision Support Systems (open access)

Using Visualization in Cockpit Decision Support Systems

In order to safely operate their aircraft, pilots must makerapid decisions based on integrating and processing large amounts ofheterogeneous information. Visual displays are often the most efficientmethod of presenting safety-critical data to pilots in real time.However, care must be taken to ensure the pilot is provided with theappropriate amount of information to make effective decisions and notbecome cognitively overloaded. The results of two usability studies of aprototype airflow hazard visualization cockpit decision support systemare summarized. The studies demonstrate that such a system significantlyimproves the performance of helicopter pilots landing under turbulentconditions. Based on these results, design principles and implicationsfor cockpit decision support systems using visualization arepresented.
Date: July 1, 2005
Creator: Aragon, Cecilia R.
System: The UNT Digital Library
In-situ Studies of the Martensitic Transformation in Ti Thin Films using the Dynamic Transmission Microscope (DTEM) (open access)

In-situ Studies of the Martensitic Transformation in Ti Thin Films using the Dynamic Transmission Microscope (DTEM)

The {alpha} to {beta} transition in pure Ti occurs mainly by a 'martensitic type' phase transformation. In such transformations, growth rates and interface velocities tend to be very large, on the order of 10{sup 3} m/s, making it difficult to observe the transformation experimentally. With thin films, it becomes even more difficult to observe, since the large surface augments the nucleation and transformation rates to levels that require nanosecond temporal resolution for experimental observations. The elucidation of the transformational mechanisms in these materials yearns for an apparatus that has both high spatial and temporal resolution. We have constructed such an instrument at LLNL (the dynamical transmission electron microscope or DTEM) that combines pulsed lasers systems and optical pump-probe techniques with a conventional TEM. We have used the DTEM to observe the transient events of the {alpha}-{beta} transformation in nanocrystalline Ti films via single shot diffraction patterns with 1.5 ns resolution. With pulsed, nanosecond laser irradiation (pump laser), the films were heated at an extreme rate of 10{sup 10} K/s. was observed At 500 ns after the initial pump laser hit, the HCP, alpha phase was almost completely transformed to the BCC, beta phase. Post-mortem investigations of the laser treated films …
Date: November 21, 2005
Creator: LaGrange, T. B.; Campbell, G. H.; Colvin, J. D.; King, W. E.; Browning, N. D.; Armstrong, M. R. et al.
System: The UNT Digital Library
Z-Beamlet (ZBL) Multi-Frame Back-lighter (MFB) System for ICF/Plasma Diagnostics (open access)

Z-Beamlet (ZBL) Multi-Frame Back-lighter (MFB) System for ICF/Plasma Diagnostics

Z-Beamlet [1] is a single-beam high-energy Nd:glass laser used for backlighting high energy density (HED) plasma physics experiments at Sandia's Z-accelerator facility. The system currently generates a single backlit image per experiment, and has been employed on approximately 50% of Z-accelerator system shots in recent years. We have designed and are currently building a system that uses Z-Beamlet to generate two distinct backlit images with adjustable time delay ranging from 2 to 20 ns between frames. The new system will double the rate of data collection and allow the temporal evolution of high energy density phenomena to be recorded on a single shot.
Date: September 8, 2005
Creator: Caird, J A; Erlandson, A C; Molander, W A; Murray, J E; Robertson, G K; Smith, I C et al.
System: The UNT Digital Library
On the Micromechanisms of Shock-Induced Martensitic Transformation in Tantalum (open access)

On the Micromechanisms of Shock-Induced Martensitic Transformation in Tantalum

Shock-induced twinning and martensitic transformation in tantalum, which exhibits no solid-state phase transformation under hydrostatic pressures up to 100 GPa, have been further investigated. Since the volume fraction and size of twin and phase domains are small in scale, they are considered foming by heterogeneous nucleation that is catalyzed by high density lattice dislocations. A dynamic dislocation mechanism is accordingly proposed based upon the observation of dense dislocation clustering within shock-recovered tantalum. The dense dislocation clustering can cause a significant increase of strain energy in local regions of {beta} (bcc) matrix, which renders mechanical instability and initiates the nucleation of twin and phase domains through the spontaneous reactions of dislocation dissociation within the dislocation clusters. That is, twin domains can be nucleated within the clusters through the homogeneous dissociation of 1/2<111> dislocations into 1/6<111> partial dislocations, and {omega} phase domains can be nucleated within the closters through the inhomogeneous dissociation of 1/2<111> dislocations into 1/12<111>, 1/3<111> and 1/12<111> partial dislocations.
Date: December 7, 2005
Creator: Hsiung, L L
System: The UNT Digital Library
Combinatorial Exploration of Novel Transparent Conducting Oxide Materials (open access)

Combinatorial Exploration of Novel Transparent Conducting Oxide Materials

High-throughput combinatorial approaches have been used for the discovery and optimization of transparent conducting oxide (TCO) materials for PV applications. We report on current investigations in In-Zn-O, In-Ti-O and In-Mo-O systems. The InZnO system is shown to be amorphous in the best conducting range with a conductivity of ~ 3000 Ω-cm-1 for 50%-70% In/Zn. The amorphous InZnO films are very smooth (2..ANG.. rms). In-Ti-O is found to be an excellent high-mobility TCO with mobilities of greater than 80 cm2/v-sec and conductivities of more than 6000 Ω-cm-1 for sputtered thin film materials.
Date: November 1, 2005
Creator: Ginley, D. S.; van Hest, M. F. A. M.; Young, D.; Teplin, C. W.; Alleman, J. L.; Dabney, M. S. et al.
System: The UNT Digital Library
Physics of arcing, and implications to sputter deposition (open access)

Physics of arcing, and implications to sputter deposition

Arc and glow discharges are defined based on their cathode processes. Arcs are characterized by collective electron emission, which can be stationary with hot cathodes (thermionic arcs), or non-stationary with cold cathodes (cathodic arcs). A brief review on cathodic arc properties serves as the starting point to better understand arcing phenomena in sputtering. Although arcing occurs in both metal and reactive sputtering, it is more of an issue in the reactive case. Arcing occurs if sufficiently high field strength leads to thermal runaway of an electron emission site. The role of insulating layers and surface potential adjustment through current leakage is highlighted. In the situation of magnetron sputtering with ''racetrack'', the need for a model with two spatial dimensions is shown. In many cases, arcing is initiated by breakdown of dielectric layers and inclusions. It is most efficiently prevented if formation and excessive charge-up of dielectric layers and inclusions can be avoided.
Date: March 15, 2005
Creator: Anders, Andre
System: The UNT Digital Library
Laser-beam propagation in high temperature hohlraum plasmas (open access)

Laser-beam propagation in high temperature hohlraum plasmas

The authors have developed a new target platform to study propagation and backscatter of a frequency-doubled (2{omega}) laser beam through large-scale length plasmas at ignition-design densities, intensities and temperatures above 3 keV. The plasma is created by heating a gas filled hohlraum target with 37 heater beams that deliver a total energy of up to 15 kJ in a 1 ns square pulse. They measure a factor of two higher temperatures than in open geometry gasbag targets investigated earlier. This new temperature regime with a measured beam transmission of up to 80% suggests we can expect good laser coupling into ignition hohlraums at the National Ignition Facility (NIF) using 2{omega} light.
Date: September 15, 2005
Creator: Niemann, C.; Froula, D.; Divol, L.; Meezan, N.; Jones, O.; Ross, R. et al.
System: The UNT Digital Library
Atomic Structure and Electronic Properties of c-Si/a-Si:H Interfaces in Si Heterojunction Solar Cells (open access)

Atomic Structure and Electronic Properties of c-Si/a-Si:H Interfaces in Si Heterojunction Solar Cells

The atomic structure and electronic properties of crystalline silicon/hydrogenated amorphous silicon (c-Si/a-Si:H) interfaces in silicon heterojunction (SHJ) solar cells are investigated by high-resolution transmission electron microscopy, atomic-resolution Z-contrast imaging, and electron energy loss spectroscopy. We find that all high-performance SHJ solar cells exhibit atomically abrupt and flat c-Si/a-Si:H interfaces and high disorder of the a-Si:H layers. These atomically abrupt and flat c-Si/a-Si:H interfaces can be realized by direct deposition of a-Si:H on c-Si substrates at a substrate temperature below 150 deg C by hot-wire chemical vapor deposition from pure silane.
Date: November 1, 2005
Creator: Yan, Y.; Page, M.; Wang, Q.; Branz, H. M.; Wang, T. H. & Al-Jassim, M. M.
System: The UNT Digital Library
MODELING URANIUM TRANSPORT IN UNSATURATED ZONE AT PENA BLANCA, MEXICO (open access)

MODELING URANIUM TRANSPORT IN UNSATURATED ZONE AT PENA BLANCA, MEXICO

None
Date: October 17, 2005
Creator: Ku, T.
System: The UNT Digital Library
The Impact of Overhang Design on the Performance of ElectrochromicWindows (open access)

The Impact of Overhang Design on the Performance of ElectrochromicWindows

In this study, various facade designs with overhangs combined with electrochromic window control strategies were modeled with a prototypical commercial office building in a hot and cold climate using the DOE 2.1E building energy simulation program. Annual total energy use (ATE), peak electric demand (PED), average daylight illuminance (DI), and daylight glare index (DGI) were computed and compared to determine which combinations of fagade design and control strategies yielded the greatest energy efficiency, daylight amenity, and visual comfort.
Date: August 1, 2005
Creator: Tavil, Aslihan & Lee, Eleanor S.
System: The UNT Digital Library
Federal Participation in LEED in 2005 (open access)

Federal Participation in LEED in 2005

The federal government is an active participant in promotingsustainable design, construction and operations and in the use of USGBC'sLeadership in Energy and Environmental Design (LEED) Green BuildingRating System. This paper presents an overview of sustainableconstruction activities in the federal sector in 2005.
Date: November 1, 2005
Creator: Payne, Christopher & Dyer, Beverly
System: The UNT Digital Library
Modeling and Experimental Investigation of Methylcyclohexane Ignition in a Rapid Compression Machine (open access)

Modeling and Experimental Investigation of Methylcyclohexane Ignition in a Rapid Compression Machine

A new mechanism for the oxidation of methylcyclohexane has been developed. The mechanism combined a newly-developed low temperature mechanism with a previously developed high temperature mechanism. Predictions from the chemical kinetic model have been compared to experimentally measured ignition delay times from a rapid compression machine. Predicted ignition delay times using the initial estimates of the methylcyclohexyl peroxy radical isomerization rate constants were much longer than those measured at low temperatures. The initial estimates of isomerization rate constants were modified based on the experimental findings of Gulati and Walker that indicate a much slower rate of isomerization. Predictions using the modified rate constants for isomerizations yielded faster ignition at lower temperatures that greatly improved the agreement between model predictions and the experimental data. These findings point to much slower isomerization rates for methylcyclohexyl peroxy radicals than previously expected.
Date: October 13, 2005
Creator: Pitz, W J; Naik, C V; Mhaold?in, T N; Curran, H J; Orme, J P; Simmie, J M et al.
System: The UNT Digital Library
A Strong Hot Spot Theorem (open access)

A Strong Hot Spot Theorem

A real number alpha is said to be b-normal if every m-long string of digits appears in the base-b expansion of alpha with limiting frequency b-m. We prove that alpha is b-normal if and only if it possesses no base-b ''hot spot''. In other words, alpha is b-normal if and only if there is no real number y such that smaller and smaller neighborhoods of y are visited by the successive shifts of the base-b expansion of alpha with larger and larger frequencies, relative to the lengths of these neighborhoods
Date: December 31, 2005
Creator: Bailey, David H. & Misiurewicz, Michal
System: The UNT Digital Library