Resource Type

2 Matching Results

Results open in a new window/tab.

Strangelet Search at the BNL Relativistic Heavy Ion Collider (open access)

Strangelet Search at the BNL Relativistic Heavy Ion Collider

We have searched for strangelets in a triggered sample of 61 million central (top 4percent) Au+Au collisions at sqrt sNN = 200 GeV near beam rapidities at the STAR solenoidal tracker detector at the BNL Relativistic Heavy Ion Collider. We have sensitivity to metastable strangelets with lifetimes of order>_0.1 ns, in contrast to limits over ten times longer in BNL Alternating Gradient Synchrotron (AGS) studies and longer still at the CERN Super Proton Synchrotron (SPS). Upper limits of a few 10-6 to 10-7 per central Au+Au collision are set for strangelets with mass>~;;30 GeV/c2.
Date: November 27, 2005
Creator: Ritter, Ha
System: The UNT Digital Library
An Enhancer Near ISL1 and an Ultraconserved Exon of PCBP2 areDerived from a Retroposon (open access)

An Enhancer Near ISL1 and an Ultraconserved Exon of PCBP2 areDerived from a Retroposon

Hundreds of highly conserved distal cis-regulatory elementshave been characterized to date in vertebrate genomes1. Many thousandsmore are predicted based on comparative genomics2,3. Yet, in starkcontrast to the genes they regulate, virtually none of these regions canbe traced using sequence similarity in invertebrates, leaving theirevolutionary origin obscure. Here we show that a class of conserved,primarily non-coding regions in tetrapods originated from a novel shortinterspersed repetitive element (SINE) retroposon family that was activein Sarcopterygii (lobe-finned fishes and terrestrial vertebrates) in theSilurian at least 410 Mya4, and, remarkably, appears to be recentlyactive in the "living fossil" Indonesian coelacanth, Latimeriamenadoensis. We show that one copy is a distal enhancer, located 500kbfrom the neuro-developmental gene ISL1. Several others represent new,possibly regulatory, alternatively spliced exons in the middle ofpre-existing Sarcopterygian genes. One of these is the>200bpultraconserved region5, 100 percent identical in mammals, and 80 percentidentical to the coelacanth SINE, that contains a 31aa alternativelyspliced exon of the mRNA processing gene PCBP26. These add to a growinglist of examples7 in which relics of transposable elements have acquireda function that serves their host, a process termed "exaptation"8, andprovide an origin for at least some of the highly-conservedvertebrate-specific genomic sequences recently discovered usingcomparative genomics.
Date: November 27, 2005
Creator: Bejerano, Gill; Lowe, Craig; Ahituv, Nadav; King, Bryan; Siepel,Adam; Salama, Sofie et al.
System: The UNT Digital Library