93 Matching Results

Results open in a new window/tab.

2004 Sensory Transduction in Microorganisms Gordon Research Conference-January 11-16, 2004 (open access)

2004 Sensory Transduction in Microorganisms Gordon Research Conference-January 11-16, 2004

Research into the mechanisms involved in the sensing and responses of microorganisms to changes in their environment is currently very active in a large number of laboratories in the US, Europe, Japan, and Israel. A wide range of eukaryotic and prokaryotic species are being studies with regard to their sensing of chemical changes, light and redox signal and intercellular signaling, leading either to changes in motile behavior, gene expression or development. It has become increasingly apparent that the mechanisms involved in development have application in higher organisms while the sensing systems in bacteria are involved in a very wide range of physiological traits, from pathogenicity, through to biofilm formation. This is an area where a wide range of state of the art tools have been used and developed over the past few decades. Approaches include behavioral studies, electro-physiology, genetics, molecular biology, structural biology, biophysics and single molecule microscopy, immunocytochemistry and molecular and mathematical modeling, all of this helped by the large number of bacterial and eukaryotic microbial genome sequences now available. The central goal of this meeting is to bring together investigators using this wide range of approaches and different systems to compare data, share ideas and approaches and seeks …
Date: January 7, 2005
Creator: Storm, Judith Armitage Carlyle
System: The UNT Digital Library
Arc Flash Boundary Calculations Using Computer Software Tools (open access)

Arc Flash Boundary Calculations Using Computer Software Tools

Arc Flash Protection boundary calculations have become easier to perform with the availability of personal computer software. These programs incorporate arc flash protection boundary formulas for different voltage and current levels, calculate the bolted fault current at each bus, and use built in time-current coordination curves to determine the clearing time of protective devices in the system. Results of the arc flash protection boundary calculations can be presented in several different forms--as an annotation to the one-line diagram, as a table of arc flash protection boundary distances, and as printed placards to be attached to the appropriate equipment. Basic arc flash protection boundary principles are presented in this paper along with several helpful suggestions for performing arc flash protection boundary calculations.
Date: January 7, 2005
Creator: Gibbs, M. D.
System: The UNT Digital Library
Averaging of Stochastic Equations for Flow and Transport in PorousMedia (open access)

Averaging of Stochastic Equations for Flow and Transport in PorousMedia

It is well known that at present exact averaging of theequations of flow and transport in random porous media have been realizedfor only a small number of special fields. Moreover, the approximateaveraging methods are not yet fully understood. For example, theconvergence behavior and the accuracy of truncated perturbation seriesare not well known; and in addition, the calculation of the high-orderperturbations is very complicated. These problems for a long time havestimulated attempts to find the answer for the question: Are there inexistence some exact general and sufficiently universal forms of averagedequations? If the answer is positive, there arises the problem of theconstruction of these equations and analyzing them. There are manypublications on different applications of this problem to various fields,including: Hydrodynamics, flow and transport in porous media, theory ofelasticity, acoustic and electromagnetic waves in random fields, etc.Here, we present a method of finding some general form of exactlyaveraged equations for flow and transport in random fields by using (1)some general properties of the Green s functions for appropriatestochastic problems, and (2) some basic information about the randomfields of the conductivity, porosity and flow velocity. We presentgeneral forms of exactly averaged non-local equations for the followingcases: (1) steady-state flow with sources in …
Date: January 7, 2005
Creator: Shvidler, Mark & Karasaki, Kenzi
System: The UNT Digital Library
Detailed Chemical Kinetic Modeling of Surrogate Fuels for Gasoline and Application to an HCCI Engine (open access)

Detailed Chemical Kinetic Modeling of Surrogate Fuels for Gasoline and Application to an HCCI Engine

Gasoline consists of many different classes of hydrocarbons, such as paraffins, olefins, aromatics, and cycloalkanes. In this study, a surrogate gasoline reaction mechanism is developed, and it has one representative fuel constituent from each of these classes. These selected constituents are iso-octane, n-heptane, 1-pentene, toluene, and methyl-cyclohexane. The mechanism was developed in a step-wise fashion, adding submechanisms to treat each fuel component. Reactions important for low temperature oxidation (<1000K) and cross-reactions among different fuels are incorporated into the mechanism. The mechanism consists of 1214 species and 5401 reactions. A single-zone engine model is used to evaluate how well the mechanism captures autoignition behavior for conditions corresponding to homogeneous charge compression ignition (HCCI) engine operation. Experimental data are available for both how the combustion phasing changes with fueling at a constant intake temperature, and also how the intake temperature has to be changed with pressure in order to maintain combustion phasing for a fixed equivalence ratio. Three different surrogate fuel mixtures are used for the modeling. Predictions are in reasonably good agreement with the engine data. In addition, the heat release rate is calculated and compared to the data from experiments. The model predicts less low-temperature heat release than that measured. …
Date: January 7, 2005
Creator: Naik, C V; Pitz, W J; Sj?berg, M; Dec, J E; Orme, J; Curran, H J et al.
System: The UNT Digital Library
Fermi level stabilization energy in group III-nitrides (open access)

Fermi level stabilization energy in group III-nitrides

Energetic particle irradiation is used to systematically introduce point defects into In{sub 1-x}Ga{sub x}N alloys over the entire composition range. Three types of energetic particles (electrons, protons, and {sup 4}He{sup +}) are used to produce a displacement damage dose spanning five decades. In InN and In-rich InGaN the free electron concentration increases with increasing irradiation dose but saturates at a sufficiently high dose. The saturation is due to Fermi level pinning at the Fermi Stabilization Energy (E{sub FS}), which is located at 4.9 eV below the vacuum level. Electrochemical capacitance-voltage (ECV) measurements show that the pinning of the surface Fermi energy at E{sub FS} is also responsible for the surface electron accumulation in as-grown InN and In-rich InGaN alloys. The results are in agreement with the amphoteric defect model that predicts that the same type of native defects are responsible for the Fermi level pinning in both cases.
Date: January 7, 2005
Creator: Li, S. X.; Yu, K. M.; Wu, J.; Jones, R. E.; Walukiewicz, W.; AgerIII, J. W. et al.
System: The UNT Digital Library
Ion Beam Analyses of Carbon Nanotubes (open access)

Ion Beam Analyses of Carbon Nanotubes

This article discusses ion beam analyses of carbon nanotubes.
Date: January 7, 2005
Creator: Naab, Fabian U.; Holland, Orin W.; Duggan, Jerome L. & McDaniel, Floyd Del. (Floyd Delbert), 1942-
System: The UNT Digital Library
Laboratory studies of X-ray emission from Fe L-shell transitions and their diagnostic utility (open access)

Laboratory studies of X-ray emission from Fe L-shell transitions and their diagnostic utility

Celestial objects are often home to complex, dynamic, intriguing environments. High-resolution x-ray spectra from these sources measured by satellites such as the Chandra, XMN-Newton, the Solar Maximum Mission, and the soon-to-be-launched Astro-E2 provide a means for understanding the physics governing these sources. Especially rich is the x-ray emission from L-shell transitions in highly charged ions. The emissions is the source of a variety of diagnostics and benchmarked by laboratory data. In this paper we discuss laboratory measurements of Fe L-shell x-ray emission including wavelengths, relative and absolute excitation cross sections, and line ratios that provide diagnostics of temperature and density.
Date: January 7, 2005
Creator: Brown, G V; Beiersdorfer, P; Chen, H; Scofield, J H; Boyce, K R; Kelley, R L et al.
System: The UNT Digital Library
The Location of the Maximum Temperature on the Cutting Edges of a Drill (open access)

The Location of the Maximum Temperature on the Cutting Edges of a Drill

This study analyzes the temperature profile along the cutting edges of a drill and describes how the temperature on the chisel edge can exceed the temperature on the primary cutting edges. A finite element model predicts the temperature distribution in the drill, where the heat flux loads applied to the finite element model are determined from analytical equations. The model for the heat flux loads considers both the heat generated on the shear plane and the heat generated on the rake face of the tool to determine the amount of heat flowing into the tool on each segment of the cutting edges. Contrary to the conventional belief that the maximum temperature occurs near the outer corner of the drill, the model predicts that the maximum temperature occurs on the chisel edge, which is consistent with experimental measurements of the temperature profile.
Date: January 7, 2005
Creator: Bono, M J & Ni, J
System: The UNT Digital Library
Non-LTE Radiation Transport in High Radiation Plasmas (open access)

Non-LTE Radiation Transport in High Radiation Plasmas

A primary goal of numerical radiation transport is obtaining a self-consistent solution for both the radiation field and plasma properties. Obtaining such a solution requires consideration of the coupling between the radiation and the plasma. The different characteristics of this coupling for continuum and line radiation have resulted in two separate sub-disciplines of radiation transport with distinct emphases and computational techniques. LTE radiation transfer focuses on energy transport and exchange through broadband radiation, primarily affecting temperature and ionization balance. Non-LTE line transfer focuses on narrowband radiation and the response of individual level populations, primarily affecting spectral properties. Many high energy density applications, particularly those with high-Z materials, incorporate characteristics of both these regimes. Applications with large radiation fields including strong line components require a non-LTE broadband treatment of energy transport and exchange. We discuss these issues and present a radiation transport treatment which combines features of both types of approaches by explicitly incorporating the dependence of material properties on both temperature and radiation fields. The additional terms generated by the radiation dependence do not change the character of the system of equations and can easily be added to a numerical transport implementation. A numerical example from a Z-pinch application demonstrates …
Date: January 7, 2005
Creator: Scott, H A
System: The UNT Digital Library
Obtaining attosecond X-ray pulses using a self-amplifiedspontaneous emission free electron laser (open access)

Obtaining attosecond X-ray pulses using a self-amplifiedspontaneous emission free electron laser

We describe a technique for the generation of a solitary attosecond X-ray pulse in a free electron laser (FEL), via a process of self-amplified spontaneous emission. In this method, electrons experience an energy modulation upon interacting with laser pulses having a duration of a few cycles within single-period wiggler magnets. Two consecutive modulation sections, followed by compression in a dispersive section, are used to obtain a single, sub-femtosecond spike in the electron peak current. This region of the electron beam experiences an enhanced growth rate for FEL amplification. After propagation through a long undulator,this current spike emits a {approx}250 attosecond X-ray pulse whose intensity dominates the X-ray emission from the rest of the electron bunch.
Date: January 7, 2005
Creator: Zholents, A.A. & Penn, G.
System: The UNT Digital Library
Open Charm Yields in d+Au Collisions at sqrt(sNN) = 200 GeV (open access)

Open Charm Yields in d+Au Collisions at sqrt(sNN) = 200 GeV

Mid-rapidity open charm spectra from direct reconstruction of D{sup 0}({bar D}{sup 0}) {yields} K{sup {-+}} {pi}{sup {+-}} in d+Au collisions and indirect electron/positron measurements via charm semileptonic decays in p+p and d+Au collisions at {radical}s{sub NN} = 200 GeV are reported. The D{sup 0}({bar D}{sup 0}) spectrum covers a transverse momentum (p{sub T}) range of 0.1 < p{sub T} < 3 GeV/c whereas the electron spectra cover a range of 1 < p{sub T} < 4 GeV/c. The electron spectra show approximate binary collision scaling between p+p and d+Au collisions. From these two independent analyses, the differential cross section per nucleon-nucleon binary interaction at mid-rapidity for open charm production from d+Au collisions at RHIC is d{sigma}{sub c{bar c}}{sup NN}/dy = 0.30 {+-} 0.04 (stat.) {+-} 0.09(syst.) mb. The results are compared to theoretical calculations. Implications for charmonium results in A+A collisions are discussed.
Date: January 7, 2005
Creator: Adams, J.; Aggarwal, M. M.; Ahammed, Z.; Amonett, J.; Anderson, B. D.; Arkhipkin, D. et al.
System: The UNT Digital Library
Beryllium Sampling and Analysis Within the DOE Complex and Opportunities for Standardization (open access)

Beryllium Sampling and Analysis Within the DOE Complex and Opportunities for Standardization

Since the U. S. Department of Energy published the DOE Beryllium Rule, 10 CFR 850, in 1999, DOE sites have been required to measure beryllium on air filters and wipes for worker protection and for release of materials from beryllium-controlled areas. Measurements in the nanogram range on a filter or wipe are typically required. Industrial hygiene laboratories have applied methods from various analytical compendia, and a number of issues have emerged with sampling and analysis practices. As a result, a committee of analytical chemists, industrial hygienists, and laboratory managers was formed in November 2003 to address the issues. The committee developed a baseline questionnaire and distributed it to DOE sites and other agencies in the U.S. and U.K. The results of the questionnaire are presented in this paper. These results confirmed that a wide variety of practices were in use in the areas of sampling, sample preparation, and analysis. Additionally, although these laboratories are generally accredited by the American Industrial Hygiene Association there are inconsistencies in performance among accredited labs. As a result, there are significant opportunities for development of standard methods that could improve consistency. The current availabilities and needs for standard methods are further discussed in a companion …
Date: February 7, 2005
Creator: MICHAEL, BRISSON
System: The UNT Digital Library
Bonding in the Superionic Phase of Water (open access)

Bonding in the Superionic Phase of Water

The predicted superionic phase of water is investigated via ab initio molecular dynamics at densities of 2.0-3.0 g/cc (34-115 GPa) along the 2000K isotherm. They find that extremely rapid (superionic) diffusion of protons occurs in a fluid phase at pressures between 34 and 58 GPa. A transition to a stable body-centered cubic (bcc) O lattice with superionic proton conductivity is observed between 70 and 75 GPa, a much higher pressure than suggested in prior work. They find that all molecular species at pressures greater than 75 GPa are too short lived to be classified as bound states. Up to 95 GPa, they find a solid superionic phase characterization by covalent O-H bonding. Above 95 GPa, a transient network phase is found characterized by symmetric O-H hydrogen bonding with nearly 50% covalent character. In addition, they describe a new metastable superionic phase with quenched O disorder.
Date: February 7, 2005
Creator: Goldman, N; Fried, L E; Kuo, I W & Mundy, C J
System: The UNT Digital Library
Defining Electron Backscatter Diffraction Resolution (open access)

Defining Electron Backscatter Diffraction Resolution

Automated electron backscatter diffraction (EBSD) mapping systems have existed for more than 10 years [1,2], and due to their versatility in characterizing multiple aspects of microstructure, they have become an important tool in microscale crystallographic studies. Their increasingly widespread use however raises questions about their accuracy in both determining crystallographic orientations, as well as ensuring that the orientation information is spatially correct. The issue of orientation accuracy (as defined by angular resolution) has been addressed previously [3-5]. While the resolution of EBSD systems is typically quoted to be on the order of 1{sup o}, it has been shown that by increasing the pattern quality via acquisition parameter adjustment, the angular resolution can be improved to sub-degree levels. Ultimately, the resolution is dependent on how it is identified. In some cases it can be identified as the orientation relative to a known absolute, in others as the misorientation between nearest neighbor points in a scan. Naturally, the resulting values can be significantly different. Therefore, a consistent and universal definition of resolution that can be applied to characterize any EBSD system is necessary, and is the focus of the current study. In this work, a Phillips (FEI) XL-40 FEGSEM coupled to a …
Date: February 7, 2005
Creator: El-Dasher, B S & Rollett, A D
System: The UNT Digital Library
Differential Synthetic Aperture Ladar (open access)

Differential Synthetic Aperture Ladar

We report a differential synthetic aperture ladar (DSAL) concept that relaxes platform and laser requirements compared to conventional SAL. Line-of-sight translation/vibration constraints are reduced by several orders of magnitude, while laser frequency stability is typically relaxed by an order of magnitude. The technique is most advantageous for shorter laser wavelengths, ultraviolet to mid-infrared. Analytical and modeling results, including the effect of speckle and atmospheric turbulence, are presented. Synthetic aperture ladars are of growing interest, and several theoretical and experimental papers have been published on the subject. Compared to RF synthetic aperture radar (SAR), platform/ladar motion and transmitter bandwidth constraints are especially demanding at optical wavelengths. For mid-IR and shorter wavelengths, deviations from a linear trajectory along the synthetic aperture length have to be submicron, or their magnitude must be measured to that precision for compensation. The laser coherence time has to be the synthetic aperture transit time, or transmitter phase has to be recorded and a correction applied on detection.
Date: February 7, 2005
Creator: Stappaerts, E A & Scharlemann, E
System: The UNT Digital Library
Error bounds from extra precise iterative refinement (open access)

Error bounds from extra precise iterative refinement

We present the design and testing of an algorithm for iterative refinement of the solution of linear equations, where the residual is computed with extra precision. This algorithm was originally proposed in the 1960s [6, 22] as a means to compute very accurate solutions to all but the most ill-conditioned linear systems of equations. However two obstacles have until now prevented its adoption in standard subroutine libraries like LAPACK: (1) There was no standard way to access the higher precision arithmetic needed to compute residuals, and (2) it was unclear how to compute a reliable error bound for the computed solution. The completion of the new BLAS Technical Forum Standard [5] has recently removed the first obstacle. To overcome the second obstacle, we show how a single application of iterative refinement can be used to compute an error bound in any norm at small cost, and use this to compute both an error bound in the usual infinity norm, and a componentwise relative error bound. We report extensive test results on over 6.2 million matrices of dimension 5, 10, 100, and 1000. As long as a normwise (resp. componentwise) condition number computed by the algorithm is less than 1/max{l_brace}10,{radical}n{r_brace} {var_epsilon}{sub …
Date: February 7, 2005
Creator: Demmel, James; Hida, Yozo; Kahan, William; Li, Xiaoye S.; Mukherjee, Soni & Riedy, E. Jason
System: The UNT Digital Library
EVALUATION OF WETTING AGENTS TO MITIGATE DUSTING WHEN TRANSFERRING DRY GLASS FORMER CHEMICALS (open access)

EVALUATION OF WETTING AGENTS TO MITIGATE DUSTING WHEN TRANSFERRING DRY GLASS FORMER CHEMICALS

Plant design support for the US Department of Energy (DOE) River Protection Project (RPP) - Waste Treatment Plant (WTP) required pilot scale testing of the High Level Waste (HLW) glass former chemical (GFC) delivery system. A pilot facility was assembled at the Clemson Environmental Technology Laboratory (CETL) under the direction of the Savannah River National Laboratory (SRNL). Tests were performed using a representative HLW GFC blend to determine the behavior of the dry chemicals when transported through a chute and discharged into the enclosed head space of an agitated tank. The use of chute purge air, injected upstream of the point where the GFCs were added to the chute, was investigated. The pilot scale testing showed purge air was effective in reducing GFC holdup in the chute and that when the GFCs were discharged into the tank head space, dusting was evident during all transport conditions. This dusting lead to additional bench scale and laboratory scale tests that showed the addition of wetting agents to HLW and Low Activity Waste (LAW) GFC blends effectively mitigated dusting at the bench and pilot scales.
Date: February 7, 2005
Creator: TIMOTHY, JONES
System: The UNT Digital Library
Identifying Synonymous Regulatory Elements in Vertebrate Genomes (open access)

Identifying Synonymous Regulatory Elements in Vertebrate Genomes

Synonymous gene regulation, defined as driving shared temporal and/or spatial expression of groups of genes, is likely predicated on genomic elements that contain similar modules of certain transcription factor binding sites (TFBS). We have developed a method to scan vertebrate genomes for evolutionary conserved modules of TFBS in a predefined configuration, and created a tool, named SynoR that identify synonymous regulatory elements (SREs) in vertebrate genomes. SynoR performs de novo identification of SREs utilizing known patterns of TFBS in active regulatory elements (REs) as seeds for genome scans. Layers of multiple-species conservation allow the use of differential phylogenetic sequence conservation filters in the search of SREs and the results are displayed as to provide an extensive annotation of genes containing detected REs. Gene Ontology categories are utilized to further functionally classify the identified genes, and integrated GNF Expression Atlas 2 data allow the cataloging of tissue-specificities of the predicted SREs. We illustrate how this new tool can be used to establish a linkage between human diseases and noncoding genomic content. SynoR is publicly available at http://synor.dcode.org.
Date: February 7, 2005
Creator: Ovcharenko, I. & Nobrega, M. A.
System: The UNT Digital Library
Numerical simulation of a laboratory-scale turbulent V-flame (open access)

Numerical simulation of a laboratory-scale turbulent V-flame

We present a three-dimensional, time-dependent simulation of a laboratory-scale rod-stabilized premixed turbulent V-flame. The simulations are performed using an adaptive time-dependent low Mach number model with detailed chemical kinetics and a mixture model for differential species diffusion. The algorithm is based on a second-order projection formulation and does not require an explicit subgrid model for turbulence or turbulence chemistry interaction. Adaptive mesh refinement is used to dynamically resolve the flame and turbulent structures. Here, we briefly discuss the numerical procedure and present detailed comparisons with experimental measurements showing that the computation is able to accurately capture the basic flame morphology and associated mean velocity field. Finally, we discuss key issues that arise in performing these types of simulations and the implications of these issues for using computation to form a bridge between turbulent flame experiments and basic combustion chemistry.
Date: February 7, 2005
Creator: Bell, J. B.; Day, M. S.; Shepherd, I. G.; Johnson, M.; Cheng, R. K.; Grcar, J. F. et al.
System: The UNT Digital Library
Phenomenology treatment of magnetohydrodynamic turbulence with non-equipartition and anisotropy (open access)

Phenomenology treatment of magnetohydrodynamic turbulence with non-equipartition and anisotropy

Magnetohydrodynamics (MHD) turbulence theory, often employed satisfactorily in astrophysical applications, has often focused on parameter ranges that imply nearly equal values of kinetic and magnetic energies and length scales. However, MHD flow may have disparity magnetic Prandtl number, dissimilar kinetic and magnetic Reynolds number, different kinetic and magnetic outer length scales, and strong anisotropy. Here a phenomenology for such ''non-equipartitioned'' MHD flow is discussed. Two conditions are proposed for a MHD flow to transition to strong turbulent flow, extensions of (1) Taylor's constant flux in an inertial range, and (2) Kolmogorov's scale separation between the large and small scale boundaries of an inertial range. For this analysis, the detailed information on turbulence structure is not needed. These two conditions for MHD transition are expected to provide consistent predictions and should be applicable to anisotropic MHD flows, after the length scales are replaced by their corresponding perpendicular components. Second, it is stressed that the dynamics and anisotropy of MHD fluctuations is controlled by the relative strength between the straining effects between eddies of similar size and the sweeping action by the large-eddies, or propagation effect of the large-scale magnetic fields, on the small scales, and analysis of this balance in principle …
Date: February 7, 2005
Creator: Zhou, Y & Matthaeus, W H
System: The UNT Digital Library
A Posteriori Error Estimators for Solutions to the Time Domain Maxwell Equations (open access)

A Posteriori Error Estimators for Solutions to the Time Domain Maxwell Equations

None
Date: February 7, 2005
Creator: Stowell, M. L. & White, D. A.
System: The UNT Digital Library
String-Corrected Black Holes (open access)

String-Corrected Black Holes

We investigate the geometry of four dimensional black hole solutions in the presence of stringy higher curvature corrections to the low energy effective action. For certain supersymmetric two charge black holes these corrections drastically alter the causal structure of the solution, converting seemingly pathological null singularities into timelike singularities hidden behind a finite area horizon. We establish, analytically and numerically, that the string-corrected two-charge black hole metric has the same Penrose diagram as the extremal four-charge black hole. The higher derivative terms lead to another dramatic effect -- the gravitational force exerted by a black hole on an inertial observer is no longer purely attractive! The magnitude of this effect is related to the size of the compactification manifold.
Date: February 7, 2005
Creator: Hubeny, Veronika; Maloney, Alexander & Rangamani, Mukund
System: The UNT Digital Library
Antimicrobial Properties of Diamondlike Carbon-Silver-Platinum Nanocomposite Thin Films (open access)

Antimicrobial Properties of Diamondlike Carbon-Silver-Platinum Nanocomposite Thin Films

Silver and platinum were incorporated within diamondlike carbon (DLC) thin films using a multicomponent target pulsed laser deposition process. Transmission electron microscopy of the DLC-silver and DLC-platinum composite films reveals that the metals self-assemble into particulate nanocomposite structures. Nanoindentation testing has shown that diamondlike carbon-silver films exhibit hardness and Young's modulus values of approximately 37 GPa and 333 GPa, respectively. DLC-silver-platinum films exhibited antimicrobial properties against Staphylococcus bacteria. Diamondlike carbon-biofunctional metal nanocomposite films have a variety of potential medical and antimicrobial applications.
Date: March 7, 2005
Creator: CHRISTOPHER, BERRY
System: The UNT Digital Library
Characterization of a picosecond laser generated 4.5 keV Ti K-alpha source for pulsed radiography (open access)

Characterization of a picosecond laser generated 4.5 keV Ti K-alpha source for pulsed radiography

None
Date: March 7, 2005
Creator: King, J A; Key, M H; Chen, C D; Freeman, R R; Phillips, T; Akli, K U et al.
System: The UNT Digital Library