93 Matching Results

Results open in a new window/tab.

Oxidation and aging in U and Pu probed by spin-orbit sum rule analysis: indications for covalent metal-oxide bonds (open access)

Oxidation and aging in U and Pu probed by spin-orbit sum rule analysis: indications for covalent metal-oxide bonds

Transmission electron microscopy is used to acquire electron energy-loss spectra from phase-specific regions of Pu and U metal, PuO{sub 2} and UO{sub 2}, and aged, self-irradiated Pu metal. The N{sub 4,5} (4d {yields} 5f) spectra are analyzed using the spin-orbit sum rule. Our results show that the technique is sensitive enough to detect changes in the branching ratio of the white-line peaks between the metal and dioxide of both U and Pu. There is a small change in the branching ratio between different Pu metals, and the data trends as would be expected for varying f electron localization, i.e., {alpha}-Pu, {delta}-Pu, aged {delta}-Pu. Moreover, our results suggest that the metal-oxide bonds in UO{sub 2} and PuO{sub 2} are strongly covalent in nature and do not exhibit an integer valence change as would be expected from purely ionic bonding.
Date: October 7, 2005
Creator: Moore, K.; van der Laan, G.; Haire, R.; Wall, M. & Schwartz, A.
System: The UNT Digital Library
Data Association and Bullet Tracking Algorithms for the Fight Sight Experiment (open access)

Data Association and Bullet Tracking Algorithms for the Fight Sight Experiment

Previous LLNL investigators developed a bullet and projectile tracking system over a decade ago. Renewed interest in the technology has spawned research that culminated in a live-fire experiment, called Fight Sight, in September 2005. The experiment was more complex than previous LLNL bullet tracking experiments in that it included multiple shooters with simultaneous fire, new sensor-shooter geometries, large amounts of optical clutter, and greatly increased sensor-shooter distances. This presentation describes the data association and tracking algorithms for the Fight Sight experiment. Image processing applied to the imagery yields a sequence of bullet features which are input to a data association routine. The data association routine matches features with existing tracks, or initializes new tracks as needed. A Kalman filter is used to smooth and extrapolate existing tracks. The Kalman filter is also used to back-track bullets to their point of origin, thereby revealing the location of the shooter. It also provides an error ellipse for each shooter, quantifying the uncertainty of shooter location. In addition to describing the data association and tracking algorithms, several examples from the Fight Sight experiment are also presented.
Date: October 7, 2005
Creator: Breitfeller, E & Roberts, R
System: The UNT Digital Library
On the Micromechanisms of Shock-Induced Martensitic Transformation in Tantalum (open access)

On the Micromechanisms of Shock-Induced Martensitic Transformation in Tantalum

Shock-induced twinning and martensitic transformation in tantalum, which exhibits no solid-state phase transformation under hydrostatic pressures up to 100 GPa, have been further investigated. Since the volume fraction and size of twin and phase domains are small in scale, they are considered foming by heterogeneous nucleation that is catalyzed by high density lattice dislocations. A dynamic dislocation mechanism is accordingly proposed based upon the observation of dense dislocation clustering within shock-recovered tantalum. The dense dislocation clustering can cause a significant increase of strain energy in local regions of {beta} (bcc) matrix, which renders mechanical instability and initiates the nucleation of twin and phase domains through the spontaneous reactions of dislocation dissociation within the dislocation clusters. That is, twin domains can be nucleated within the clusters through the homogeneous dissociation of 1/2<111> dislocations into 1/6<111> partial dislocations, and {omega} phase domains can be nucleated within the closters through the inhomogeneous dissociation of 1/2<111> dislocations into 1/12<111>, 1/3<111> and 1/12<111> partial dislocations.
Date: December 7, 2005
Creator: Hsiung, L L
System: The UNT Digital Library
High Pressure Structure of Half-Metallic CrO2 (open access)

High Pressure Structure of Half-Metallic CrO2

Evidence for a structural phase transition from rutile {alpha}-CrO{sub 2} phase I (P4{sub 2}/mnm) to orthorhombic {beta}-CrO{sub 2} phase II (CaCl{sub 2}-like, Pnnm) is presented using angle-resolved synchrotron x-ray diffraction and high sensitivity confocal Raman spectroscopy. The transition to the CaCl{sub 2} structure, which appears to be second-order, occurs at 12 {+-} 3 GPa without any measurable discontinuity in volume, but is accompanied by an apparent increase in compressibility. Raman data are also presented to show further evidence for a second-order structural phase transition as well to demonstrate soft-mode behavior of the B{sub 1g} phonon mode.
Date: September 7, 2005
Creator: Maddox, B.; Yoo, C. S.; Kasinathan, D.; Pickett, W. E. & Scalettar, R. T.
System: The UNT Digital Library
Linear scaling first-principles molecular dynamics with plane waves accuracy (open access)

Linear scaling first-principles molecular dynamics with plane waves accuracy

We propose a real-space finite differences approach for accurate and unbiased O(N) Density Functional Theory molecular dynamics simulations based on a localized orbitals representation of the electronic structure. The discretization error can be reduced systematically by adapting the mesh spacing, while the orbitals truncation error decreases exponentially with the radius of the localization regions. For regions large enough, energy conservation in microcanonical simulations is demonstrated for liquid water. We propose an explanation for the energy drift observed for smaller regions.
Date: October 7, 2005
Creator: Fattebert, J. & Gygi, F.
System: The UNT Digital Library
Averaging of Stochastic Equations for Flow and Transport in PorousMedia (open access)

Averaging of Stochastic Equations for Flow and Transport in PorousMedia

It is well known that at present exact averaging of theequations of flow and transport in random porous media have been realizedfor only a small number of special fields. Moreover, the approximateaveraging methods are not yet fully understood. For example, theconvergence behavior and the accuracy of truncated perturbation seriesare not well known; and in addition, the calculation of the high-orderperturbations is very complicated. These problems for a long time havestimulated attempts to find the answer for the question: Are there inexistence some exact general and sufficiently universal forms of averagedequations? If the answer is positive, there arises the problem of theconstruction of these equations and analyzing them. There are manypublications on different applications of this problem to various fields,including: Hydrodynamics, flow and transport in porous media, theory ofelasticity, acoustic and electromagnetic waves in random fields, etc.Here, we present a method of finding some general form of exactlyaveraged equations for flow and transport in random fields by using (1)some general properties of the Green s functions for appropriatestochastic problems, and (2) some basic information about the randomfields of the conductivity, porosity and flow velocity. We presentgeneral forms of exactly averaged non-local equations for the followingcases: (1) steady-state flow with sources in …
Date: January 7, 2005
Creator: Shvidler, Mark & Karasaki, Kenzi
System: The UNT Digital Library
A Posteriori Error Estimators for Solutions to the Time Domain Maxwell Equations (open access)

A Posteriori Error Estimators for Solutions to the Time Domain Maxwell Equations

None
Date: February 7, 2005
Creator: Stowell, M. L. & White, D. A.
System: The UNT Digital Library
Phenomenology treatment of magnetohydrodynamic turbulence with non-equipartition and anisotropy (open access)

Phenomenology treatment of magnetohydrodynamic turbulence with non-equipartition and anisotropy

Magnetohydrodynamics (MHD) turbulence theory, often employed satisfactorily in astrophysical applications, has often focused on parameter ranges that imply nearly equal values of kinetic and magnetic energies and length scales. However, MHD flow may have disparity magnetic Prandtl number, dissimilar kinetic and magnetic Reynolds number, different kinetic and magnetic outer length scales, and strong anisotropy. Here a phenomenology for such ''non-equipartitioned'' MHD flow is discussed. Two conditions are proposed for a MHD flow to transition to strong turbulent flow, extensions of (1) Taylor's constant flux in an inertial range, and (2) Kolmogorov's scale separation between the large and small scale boundaries of an inertial range. For this analysis, the detailed information on turbulence structure is not needed. These two conditions for MHD transition are expected to provide consistent predictions and should be applicable to anisotropic MHD flows, after the length scales are replaced by their corresponding perpendicular components. Second, it is stressed that the dynamics and anisotropy of MHD fluctuations is controlled by the relative strength between the straining effects between eddies of similar size and the sweeping action by the large-eddies, or propagation effect of the large-scale magnetic fields, on the small scales, and analysis of this balance in principle …
Date: February 7, 2005
Creator: Zhou, Y & Matthaeus, W H
System: The UNT Digital Library
Defining Electron Backscatter Diffraction Resolution (open access)

Defining Electron Backscatter Diffraction Resolution

Automated electron backscatter diffraction (EBSD) mapping systems have existed for more than 10 years [1,2], and due to their versatility in characterizing multiple aspects of microstructure, they have become an important tool in microscale crystallographic studies. Their increasingly widespread use however raises questions about their accuracy in both determining crystallographic orientations, as well as ensuring that the orientation information is spatially correct. The issue of orientation accuracy (as defined by angular resolution) has been addressed previously [3-5]. While the resolution of EBSD systems is typically quoted to be on the order of 1{sup o}, it has been shown that by increasing the pattern quality via acquisition parameter adjustment, the angular resolution can be improved to sub-degree levels. Ultimately, the resolution is dependent on how it is identified. In some cases it can be identified as the orientation relative to a known absolute, in others as the misorientation between nearest neighbor points in a scan. Naturally, the resulting values can be significantly different. Therefore, a consistent and universal definition of resolution that can be applied to characterize any EBSD system is necessary, and is the focus of the current study. In this work, a Phillips (FEI) XL-40 FEGSEM coupled to a …
Date: February 7, 2005
Creator: El-Dasher, B S & Rollett, A D
System: The UNT Digital Library
String-Corrected Black Holes (open access)

String-Corrected Black Holes

We investigate the geometry of four dimensional black hole solutions in the presence of stringy higher curvature corrections to the low energy effective action. For certain supersymmetric two charge black holes these corrections drastically alter the causal structure of the solution, converting seemingly pathological null singularities into timelike singularities hidden behind a finite area horizon. We establish, analytically and numerically, that the string-corrected two-charge black hole metric has the same Penrose diagram as the extremal four-charge black hole. The higher derivative terms lead to another dramatic effect -- the gravitational force exerted by a black hole on an inertial observer is no longer purely attractive! The magnitude of this effect is related to the size of the compactification manifold.
Date: February 7, 2005
Creator: Hubeny, Veronika; Maloney, Alexander & Rangamani, Mukund
System: The UNT Digital Library
South Asian Summer Monsoon and Its Relationship with ENSO in the IPCC AR4 Simulations (open access)

South Asian Summer Monsoon and Its Relationship with ENSO in the IPCC AR4 Simulations

In this paper we use the extensive integrations produced for the IPCC Fourth Assessment Report (AR4) to examine the relationship between ENSO and the monsoon at interannual and decadal timescales. We begin with an analysis of the monsoon simulation in the 20th century integrations. Six of the 18 models were found to have a reasonably realistic representation of monsoon precipitation climatology. For each of these six models SST and anomalous precipitation evolution along the equatorial Pacific during El Nino events display considerable differences when compared to observations. Out of these six models only four (GFDL{_}CM{_}2.0, GFDL{_}CM{_}2.1, MRI, and MPI{_}ECHAM5) exhibit a robust ENSO-monsoon contemporaneous teleconnection, including the known inverse relationship between ENSO and rainfall variations over India. Lagged correlations between the all-India rainfall (AIR) index and Nino3.4 SST reveal that three models represent the timing of the teleconnection, including the spring predictability barrier which is manifested as the transition from positive to negative correlations prior to the monsoon onset. Furthermore, only one of these three models (GFDL{_}CM{_}2.1) captures the observed phase lag with the strongest anticorrelation of SST peaking 2-3 months after the summer monsoon, which is partially attributable to the intensity of simulated El Nino itself. We find that …
Date: September 7, 2005
Creator: Annamalai, H.; Hamilton, K. & Sperber, K. R.
System: The UNT Digital Library
Hybrid FDTD Analysis for Periodic On-Chip Terahertz (THZ) Structures (open access)

Hybrid FDTD Analysis for Periodic On-Chip Terahertz (THZ) Structures

We present electromagnetic analysis and radiation efficiency calculations for on-chip terahertz (THz) structures based on a hybrid, finite-difference, time-domain (HFDTD) technique. The method employs the FDTD technique to calculate S-parameters for one cell of a periodic structure. The transmission ABCD matrix is then estimated and multiplied by itself n times to obtain the n-cell periodic structure ABCD parameters that are then converted back to S-parameters. Validation of the method is carried out by comparing the results of the hybrid technique with FDTD calculations of the entire periodic structure as well as with HFSS which all agree quite well. This procedure reduces the CPU-time and allows efficient design and optimization of periodic THz radiation sources. Future research will involve coupling of Maxwell's equations with a more detailed, physics-based transport model for higher-order effects.
Date: June 7, 2005
Creator: Hussein, Yasser A. & Spencer, James E.
System: The UNT Digital Library
Determination of Longitudinal Phase Space in SLAC Main Accelerator Beams (open access)

Determination of Longitudinal Phase Space in SLAC Main Accelerator Beams

In the E164 Experiment at that Stanford Linear Accelerator Center (SLAC), we drive plasma wakes for electron acceleration using 28.5 GeV bunches from the main accelerator. These bunches can now be made with an RMS length of 12 microns, and accurate direct measurement of their lengths is not feasible shot by shot. Instead, we use an indirect technique, measuring the energy spectrum at the end of the linac and comparing with detailed simulations of the entire machine. We simulate with LiTrack, a 2D particle tracking code developed at SLAC. Understanding the longitudinal profile allows a better understanding of acceleration in the plasma wake, as well as investigation of related effects. We discuss the method and validation of our phase space determinations.
Date: June 7, 2005
Creator: Barnes, C.; Decker, F. J.; Emma, P.; Hogan, M. J.; Iverson, R.; Krejcik, P. et al.
System: The UNT Digital Library
Simulation of HOM Leakage in the PEP-II Bellows (open access)

Simulation of HOM Leakage in the PEP-II Bellows

An important factor that limits the PEP-II from operating at high currents is higher-order-mode (HOM) heating of the bellows. One source of HOM heating is the formation of trapped modes at the bellows as a result of geometry variation in the vacuum chamber, for example, the masking near the central vertex chamber. Another source comes from HOMs generated upstream that leak through the gaps between the bellows fingers. Modeling the fine details of the bellows and the surrounding geometry requires the resolution and accuracy only possible with a large number of mesh points on an unstructured grid. We use the parallel finite element eigensolver Omega3P for trapped mode calculations and the S-matrix solver S3P for transmission analysis. The damping of the HOMs by the use of absorbers inside the bellows will be investigated.
Date: June 7, 2005
Creator: Ng, C. K.; Folwell, N.; Ge, L.; Langton, J.; Lee, L. Q. & Novokhatski, A.
System: The UNT Digital Library
Field Ionization using a 28.5 GeV Electron Beam (open access)

Field Ionization using a 28.5 GeV Electron Beam

The E164/E164X plasma wakefield experiment studies beam-plasma interactions at the Stanford Linear Acceleration Center (SLAC). Due to SLAC's recent ability to variably compress bunches longitudinally from 650 {micro}m down to 20 {micro}m, the incoming beam is sufficiently dense to field ionize the neutral lithium (Li) vapor. The field ionization effects are characterized by the beams energy loss through the Li vapor column. Experiment results are presented.
Date: June 7, 2005
Creator: O'Connell, C.; Barnes, C. D.; Decker, F. J.; Hogan, M. J.; Iverson, R.; Krejcik, P. et al.
System: The UNT Digital Library
A parallel computer implementation of fast low-rank QR approximation of the Biot-Savart law (open access)

A parallel computer implementation of fast low-rank QR approximation of the Biot-Savart law

In this paper we present a low-rank QR method for evaluating the discrete Biot-Savart law on parallel computers. It is assumed that the known current density and the unknown magnetic field are both expressed in a finite element expansion, and we wish to compute the degrees-of-freedom (DOF) in the basis function expansion of the magnetic field. The matrix that maps the current DOF to the field DOF is full, but if the spatial domain is properly partitioned the matrix can be written as a block matrix, with blocks representing distant interactions being low rank and having a compressed QR representation. The matrix partitioning is determined by the number of processors, the rank of each block (i.e. the compression) is determined by the specific geometry and is computed dynamically. In this paper we provide the algorithmic details and present computational results for large-scale computations.
Date: November 7, 2005
Creator: White, D. A.; Fasenfest, B. J. & Stowell, M. L.
System: The UNT Digital Library
Surface Energy Anisotropy Effects on Pore-Channel Stability:Rayleigh Instabilities in m-Plane Sapphire (open access)

Surface Energy Anisotropy Effects on Pore-Channel Stability:Rayleigh Instabilities in m-Plane Sapphire

Internal, high-aspect-ratio pore channels with their long axes parallel to the m(10{bar 1}0) plane of sapphire were generated through sequential application of photolithography, ion-beam etching and solid-state diffusion bonding. The axial orientation of channels within the m plane was systematically varied to sample a range of bounding-surface crystallographies. The morphologic evolution of these pore channels during anneals at 1700 C was recorded by postanneal optical microscopy. The development and growth of periodic axial variations in the pore channel radius was observed, and ultimately led to the formation of discrete pores. The wavelength and average pore spacing, assumed to reflect the kinetically dominant perturbation wavelength, varied with the in-plane pore channel orientation, as did the time for complete channel breakup. Results are compared to those previously obtained when pore channels were etched into c(0001)-plane sapphire and annealed under similar conditions. The results indicate a strong effect of surface stability on the evolution behavior.
Date: September 7, 2005
Creator: Santala, Melissa K. & Glaeser, Andreas M.
System: The UNT Digital Library
A Summary of Recent Damage-Initiation Experiments on KDP Crystals (open access)

A Summary of Recent Damage-Initiation Experiments on KDP Crystals

We summarize recent investigations of the density and morphology of bulk damage in KDP crystals as a function of pulse duration, temporal profile, wavelength, and energy fluence. As previously reported by Runkel et al., we also find that the size of bulk damage sites varies roughly linearly with pulse duration for pulses between 1 ns and 9 ns. However this trend no longer applies at pulse durations below 1 ns. Experiments measuring the damage density and size distribution as a function of wavelength confirm many previous works which indicated a strong dependence of damage density with wavelength. However, we also find that the size of damage sites is relatively insensitive to wavelength. Further we see damage due to Flat-In-Time (FIT) pulses has different pulse length and fluence dependence than Gaussian pulses. We demonstrate that a simple thermal diffusion model can account for observed differences in damage densities due to square and Gaussian temporally shaped pulses of equal fluence. Moreover, we show that the key laser parameter governing size of the bulk damage sites is the length of time the pulse remains above a specific intensity. The different dependences of damage density and damage site size on laser parameters suggest different …
Date: November 7, 2005
Creator: Carr, C W; Feit, M D; Rubenchik, A M; Trenholme, J B & Spaeth, M L
System: The UNT Digital Library
CONTAINMENT EVALUATION OF BREACHED AL-SNF FOR CASK TRANSPORT (open access)

CONTAINMENT EVALUATION OF BREACHED AL-SNF FOR CASK TRANSPORT

Aluminum-based spent nuclear fuel (Al-SNF) from foreign and domestic research reactors (FRR/DRR) is being shipped to the Savannah River Site. To enter the U.S., the cask with loaded fuel must be certified to comply with the requirements in the Title 10 of the U.S. Code of Federal Regulations, Part 71. The requirements include demonstration of containment of the cask with its contents under normal and accident conditions. Al-SNF is subject to corrosion degradation in water storage, and many of the fuel assemblies are ''failed'' or have through-clad damage. A methodology has been developed with technical bases to show that Al-SNF with cladding breaches can be directly transported in standard casks and maintained within the allowable release rates. The approach to evaluate the limiting allowable leakage rate, L{sub R}, for a cask with breached Al-SNF for comparison to its test leakage rate could be extended to other nuclear material systems. The approach for containment analysis of Al-SNF follows calculations for commercial spent fuel as provided in NUREG/CR-6487 that adopts ANSI N14.5 as a methodology for containment analysis. The material-specific features and characteristics of damaged Al-SNF (fuel materials, fabrication techniques, microstructure, radionuclide inventory, and vapor corrosion rates) that were derived from literature …
Date: November 7, 2005
Creator: Vinson, D. W.; Sindelar, R. L. & Iyer, N. C.
System: The UNT Digital Library
SAES St 909 Getter Testing at the Savannah River National Laboratory (open access)

SAES St 909 Getter Testing at the Savannah River National Laboratory

Process gas tritium stripper technology has gone from catalytic oxidation followed by absorption on molecular sieve/zeolite beds to non-evaporate metal getter technology. SAES Getters produces a number of commercial getter products including St 909. St 909, a Zr-Mn-Fe alloy, is sold in pellet form, can decompose (''crack'') a number of process gas impurities, and retains lower levels of tritium than other getters. The performance of this material to remove process impurities, especially methane, under of variety of operating conditions has been part of a Savannah River National Laboratory (SRNL) for five years. St 909 has been tested at the bench (6 gram) scale, the pilot (500 gram) scale, and at the full (5300) gram scale under a variety of test conditions. This paper gives a brief summary of test results obtained for the different scale tests.
Date: September 7, 2005
Creator: Klein, J. E. & Holder, J. E
System: The UNT Digital Library
Baryon-strangeness correlations: a diagnostic of stronglyinteracting matter (open access)

Baryon-strangeness correlations: a diagnostic of stronglyinteracting matter

The correlation between baryon number and strangeness elucidates the nature of strongly interacting matter. This diagnostic can be extracted theoretically from lattice QCD calculations and experimentally from event-by-event fluctuations. The analysis of present lattice results above the critical temperature severely limits the presence of q{bar q} bound states, thus supporting a picture of independent (quasi)quarks. Details may be found in [1].
Date: October 7, 2005
Creator: Koch, Volker; Majumder, Abhijit & Randrup, Jorgen
System: The UNT Digital Library
Closing in on a Short-Hard Burst Progenitor: Constraints From Early-Time Optical Imaging and Spectroscopy of a Possible Host Galaxy of GRB 050509b (open access)

Closing in on a Short-Hard Burst Progenitor: Constraints From Early-Time Optical Imaging and Spectroscopy of a Possible Host Galaxy of GRB 050509b

The localization of the short-duration, hard-spectrum gamma-ray burst GRB050509b by the Swift satellite was a watershed event. Never before had a member of this mysterious subclass of classic GRBs been rapidly and precisely positioned in a sky accessible to the bevy of ground-based follow-up facilities. Thanks to the nearly immediate relay of the GRB position by Swift, we began imaging the GRB field 8 minutes after the burst and have continued during the 8 days since. Though the Swift X-ray Telescope (XRT) discovered an X-ray afterglow of GRB050509b, the first ever of a short-hard burst, thus far no convincing optical/infrared candidate afterglow or supernova has been found for the object. We present a re-analysis of the XRT afterglow and find an absolute position of R.A. = 12h36m13.59s, Decl. = +28{sup o}59'04.9'' (J2000), with a 1{sigma} uncertainty of 3.68'' in R.A., 3.52'' in Decl.; this is about 4'' to the west of the XRT position reported previously. Close to this position is a bright elliptical galaxy with redshift z = 0.2248 {+-} 0.0002, about 1' from the center of a rich cluster of galaxies. This cluster has detectable diffuse emission, with a temperature of kT = 5.25{sub -1.68}{sup +3.36} keV. We …
Date: June 7, 2005
Creator: Bloom, Joshua S.; Prochaska, J. X.; Pooley, D.; Blake, C. W.; Foley, R. J.; Jha, S. et al.
System: The UNT Digital Library
EXPERIENCE MONITORING FOR LOW LEVEL NEUTRON RADIATION AT THE H-CANYON AT THE SAVANNAH RIVER SITE (open access)

EXPERIENCE MONITORING FOR LOW LEVEL NEUTRON RADIATION AT THE H-CANYON AT THE SAVANNAH RIVER SITE

Department of Energy contractors are required to monitor external occupational radiation exposure of an individual likely to receive an effective dose equivalent to the whole body of 0.1 rem (0.001sievert) or more in a year. For a working year of 2000 hours, this translates to a dose rate of 0.05 mrem/hr (0.5 {micro}Sv/hr). This can be a challenging requirement for neutron exposure because traditional surveys with shielded BF{sub 3} proportional counters are difficult to conduct, particularly at low dose rates. A modified survey method was used at the Savannah River Site to find low dose rates in excess of 0.05 mrem/hr. An unshielded He{sup 3} detector was used to find elevated gross slow neutron counts. Areas with high count rates on the unshielded He{sup 3} detector were further investigated with shielded BF{sub 3} proportional counters and thermoluminescent neutron dosimeters were placed in the area of interest. An office area was investigated with this method. The data initially suggested that whole body neutron dose rates to office workers could be occurring at levels significantly higher than 0.1 rem (0.001sievert). The final evaluation, however, showed that the office workers were exposed to less than 0.1 rem/yr (0.001sievert/yr) of neutron radiation.
Date: October 7, 2005
Creator: HOGUE, MARK
System: The UNT Digital Library
Strength of Multiple Parallel Biological Bonds (open access)

Strength of Multiple Parallel Biological Bonds

Multivalent interactions play a critical role in a variety of biological processes on both molecular and cellular levels. We have used molecular force spectroscopy to investigate the strength of multiple parallel peptide-antibody bonds using a system that allowed us to determine the rupture forces and the number of ruptured bonds independently. In our experiments the interacting molecules were attached to the surfaces of the probe and sample of the atomic force microscope with flexible polymer tethers, and unique mechanical signature of the tethers determined the number of ruptured bonds. We show that the rupture forces increase with the number of interacting molecules and that the measured forces obey the predictions of a Markovian model for the strength of multiple parallel bonds. We also discuss the implications of our results to the interpretation of force spectroscopy measurements in multiple bond systems.
Date: December 7, 2005
Creator: Sulchek, T A; Friddle, R W & Noy, A
System: The UNT Digital Library