1,271 Matching Results

Results open in a new window/tab.

Bulk Heterojunction Organic Photovoltaic Devices Using Dendrimers (open access)

Bulk Heterojunction Organic Photovoltaic Devices Using Dendrimers

A family of prototype ..pi..-conjugated dendrimers has been synthesized and incorporated into solution-processable organic photovoltaic (OPV) devices. Bulk heterojunction devices were fabricated by blending the dendrimers with a solubilized fullerene. The best of these initial devices, which were not optimized for morphology, exhibited external quantum efficiencies of 22% at peak wavelength. It was found that 3-arm dendrimers, when sufficiently soluble, yielded higher photocurrents than their 4-arm counterparts. This was attributed to better planarity and intermolecular alignment of the 3-arm version. Device efficiency was seen to increase with increasing arm length. A reduced-band gap dendrimer was synthesized by attaching electron-withdrawing groups onto the core to yield an optical band gap of 1.82 eV.
Date: November 1, 2005
Creator: Kopidakis, N.; Mitchell, W. J.; Bozell, J. J.; Piris, J.; Ginley, D. S.; Rumbles, G. et al.
System: The UNT Digital Library
Results from the Second International Module Intercomparison (open access)

Results from the Second International Module Intercomparison

The peak-watt rating is a primary indicator of PV performance. The peak power rating is the maximum electrical power that is produced when the PV device is continuously illuminated at 1000 Wm/sup-2/ total irradiance under International Electrotechnical Commission Standard 60904-2 reference spectrum, and 25 deg C cell temperature. Most manufacturers trace their peak-watt rating through calibrations performed at recognized terrestrial calibration facilities. Manufacturers typically perform intercomparisons among a set of their modules internally with other plants and among. Sometimes they have the same module measured at different calibration facilities to determine the differences in calibration. This intercomparison was to mimic this procedure and supply new thin film samples along with samples that could pose other problems. These intercomparisons sample the laboratories' everyday procedures better than a formal intercomparison where the laboratories' best procedures and data scrutiny are used.
Date: November 1, 2005
Creator: Rummel, S.; Anderberg, A. & Emery, K.
System: The UNT Digital Library
Using Visualization in Cockpit Decision Support Systems (open access)

Using Visualization in Cockpit Decision Support Systems

Beamline 7.2 of the Advanced Light Source (ALS) at the Lawrence Berkeley National Laboratory (LBNL) is a beam diagnostics system that uses the synchrotron radiation emitted by a dipole magnet. It consists of two branches; in the first one the x-ray portion of the radiation is used in a pinhole camera system for measuring the transverse profile of the beam. The second branch is equipped with an x-ray beam position monitor (BPM) and with a multipurpose port where the visible and the far-infrared part of the radiation can be used for various applications such as bunch length measurements and IR coherent synchrotron radiation experiments. The pinhole system has been operating successfully since the end of 2003. The installation of the second branch has been completed recently and the results of its commissioning are presented in this paper together with examples of beam measurements performed at BL 7.2.
Date: July 1, 2005
Creator: Aragon, Cecilia R.
System: The UNT Digital Library
Suitability of Magnesium Oxide as a Visar Window (open access)

Suitability of Magnesium Oxide as a Visar Window

Impedance matching of a velocity interferometer for any reflector (VISAR) window to a material under study helps simplify a shock experiment by effectively allowing one to measure an in situ particle velocity. The shock impedance of magnesium oxide (MgO) falls roughly midway between those of sapphire and LiF, two of the most frequently used VISAR window materials. A series of symmetric impact experiments was performed to characterize the suitability of single crystal, (100) oriented magnesium oxide as a VISAR window material. These experiments yielded good results and show the viability of MgO as a VISAR window up to 23 GPa. Results were used to determine window correction factors and, subsequently, to estimate the pressure induced change in index of refraction. In many of the shots in this work we exceeded the Hugoniot elastic limit (HEL) of MgO, and both elastic and plastic waves are evident in the velocity profiles. The presence of both waves within the VISAR window complicates the typical VISAR window correction analysis. Preliminary analysis of the elastic and plastic contributions to the window correction is presented.
Date: January 1, 2005
Creator: Stevens, G. D.; Veeser, L. R.; Rigg, P. A. & Hixson, R. S.
System: The UNT Digital Library
Fabrication and performance of nanoscale ultra-smooth programmed defects for EUV Lithography (open access)

Fabrication and performance of nanoscale ultra-smooth programmed defects for EUV Lithography

We have developed processes for producing ultra-smooth nanoscale programmed substrate defects that have applications in areas such as thin film growth, EUV lithography, and defect inspection. Particle, line, pit, and scratch defects on the substrates between 40 and 140 nm wide 50 to 90 nm high have been successfully produced using e-beam lithograpy and plasma etching in both Silicon and Hydrosilsequioxane films. These programmed defect substrates have several advantages over those produced previously using gold nanoparticles or polystyrene latex spheres--most notably, the ability to precisely locate features and produce recessed as well as bump type features in ultra-smooth films. These programmed defects were used to develop techniques for film defect mitigation and results are discussed.
Date: February 1, 2005
Creator: Olynick, D. L.; Salmassi, F.; Liddle, J. A.; Mirkarimi, P. B.; Spiller, E.; Baker, S. L. et al.
System: The UNT Digital Library
Large releases from CO2 storage reservoirs: analogs, scenarios,and modeling needs (open access)

Large releases from CO2 storage reservoirs: analogs, scenarios,and modeling needs

While the purpose of geologic storage in deep salineformations is to trap greenhouse gases underground, the potential existsfor CO2 to escape from the target reservoir, migrate upward alongpermeable pathways, and discharge at the land surface. In this paper, weevaluate the potential for such CO2 discharges based on the analysis ofnatural analogs, where large releases of gas have been observed. We areparticularly interested in circumstances that could generate sudden,possibly self-enhancing release events. The probability for such eventsmay be low, but the circumstances under which they occur and thepotential consequences need to be evaluated in order to designappropriate site-selection and risk-management strategies. Numericalmodeling of hypothetical test cases is suggested to determine criticalconditions for large CO2 releases, to evaluate whether such conditionsmaybe possible at designated storage sites, and, if applicable, toevaluate the potential impacts of such events as well as designappropriate mitigation strategies.
Date: September 1, 2005
Creator: Birkholzer, Jens; Pruess, Karsten; Lewicki, Jennifer; Rutqvist,Jonny; Tsang, Chin-Fu & Karimjee, Anhar
System: The UNT Digital Library
Large Releases from CO2 Storage Reservoirs: A Discussion ofNatural Analogs, FEPS, and Modeling Needs (open access)

Large Releases from CO2 Storage Reservoirs: A Discussion ofNatural Analogs, FEPS, and Modeling Needs

While the purpose of geologic storage in deep saline formations is to trap greenhouse gases underground, the potential exists for CO{sub 2} to escape from the target reservoir, migrate upward along permeable pathways, and discharge at the land surface. In this paper, we evaluate the potential for such CO{sub 2} discharges based on the analysis of natural analogs, where large releases of gas have been observed. We are particularly interested in circumstances that could generate sudden, possibly self-enhancing release events. The probability for such events may be low, but the circumstances under which they occur and the potential consequences need to be evaluated in order to design appropriate site-selection and risk-management strategies. Numerical modeling of hypothetical test cases is suggested to determine critical conditions for large CO{sub 2} releases, to evaluate whether such conditions may be possible at designated storage sites, and, if applicable, to evaluate the potential impacts of such events as well as design appropriate mitigation strategies.
Date: November 1, 2005
Creator: Birkholzer, J.; Pruess, K.; Lewicki, J. L.; Rutqvist, J.; Tsang, C-F. & Karimjee, A.
System: The UNT Digital Library
Saturation of CVD Diamond Detectors (open access)

Saturation of CVD Diamond Detectors

A 5 x 0.25 mm Chemical Vapor Deposited (CVD) diamond detector, with a voltage bias of + 250V, was excited by a 400 nm laser (3.1 eV photons) in order to study the saturation of the wafer and its surrounding electronics. In a first experiment, the laser beam energy was increased from a few tens of a pJ to about 100 µJ, and the signal from the diamond was recorded until full saturation of the detection system was achieved. Clear saturation of the detection system was observed at about 40 V, which corresponds with the expected saturation at 10% of the applied bias (250V). The results indicate that the interaction mechanism of the 3.1 eV photons in the diamond (Ebandgap = 5.45 eV) is not a multi-photon process but is linked to the impurities and defects of the crystal. In a second experiment, the detector was irradiated by a saturating first laser pulse and then by a delayed laser pulse of equal or smaller amplitude with delays of 5, 10, and 20 ns. The results suggest that the diamond and associated electronics recover within 10 to 20 ns after a strong saturating pulse.
Date: January 1, 2005
Creator: Dauffy, Lucile S.; Lerche, Richard A.; Schmid, Greg J.; Koch, Jeffrey A. & Silbernagel, Christopher
System: The UNT Digital Library
Using Visualization in Cockpit Decision Support Systems (open access)

Using Visualization in Cockpit Decision Support Systems

In order to safely operate their aircraft, pilots must makerapid decisions based on integrating and processing large amounts ofheterogeneous information. Visual displays are often the most efficientmethod of presenting safety-critical data to pilots in real time.However, care must be taken to ensure the pilot is provided with theappropriate amount of information to make effective decisions and notbecome cognitively overloaded. The results of two usability studies of aprototype airflow hazard visualization cockpit decision support systemare summarized. The studies demonstrate that such a system significantlyimproves the performance of helicopter pilots landing under turbulentconditions. Based on these results, design principles and implicationsfor cockpit decision support systems using visualization arepresented.
Date: July 1, 2005
Creator: Aragon, Cecilia R.
System: The UNT Digital Library
Combinatorial Exploration of Novel Transparent Conducting Oxide Materials (open access)

Combinatorial Exploration of Novel Transparent Conducting Oxide Materials

High-throughput combinatorial approaches have been used for the discovery and optimization of transparent conducting oxide (TCO) materials for PV applications. We report on current investigations in In-Zn-O, In-Ti-O and In-Mo-O systems. The InZnO system is shown to be amorphous in the best conducting range with a conductivity of ~ 3000 Ω-cm-1 for 50%-70% In/Zn. The amorphous InZnO films are very smooth (2..ANG.. rms). In-Ti-O is found to be an excellent high-mobility TCO with mobilities of greater than 80 cm2/v-sec and conductivities of more than 6000 Ω-cm-1 for sputtered thin film materials.
Date: November 1, 2005
Creator: Ginley, D. S.; van Hest, M. F. A. M.; Young, D.; Teplin, C. W.; Alleman, J. L.; Dabney, M. S. et al.
System: The UNT Digital Library
Atomic Structure and Electronic Properties of c-Si/a-Si:H Interfaces in Si Heterojunction Solar Cells (open access)

Atomic Structure and Electronic Properties of c-Si/a-Si:H Interfaces in Si Heterojunction Solar Cells

The atomic structure and electronic properties of crystalline silicon/hydrogenated amorphous silicon (c-Si/a-Si:H) interfaces in silicon heterojunction (SHJ) solar cells are investigated by high-resolution transmission electron microscopy, atomic-resolution Z-contrast imaging, and electron energy loss spectroscopy. We find that all high-performance SHJ solar cells exhibit atomically abrupt and flat c-Si/a-Si:H interfaces and high disorder of the a-Si:H layers. These atomically abrupt and flat c-Si/a-Si:H interfaces can be realized by direct deposition of a-Si:H on c-Si substrates at a substrate temperature below 150 deg C by hot-wire chemical vapor deposition from pure silane.
Date: November 1, 2005
Creator: Yan, Y.; Page, M.; Wang, Q.; Branz, H. M.; Wang, T. H. & Al-Jassim, M. M.
System: The UNT Digital Library
The Impact of Overhang Design on the Performance of ElectrochromicWindows (open access)

The Impact of Overhang Design on the Performance of ElectrochromicWindows

In this study, various facade designs with overhangs combined with electrochromic window control strategies were modeled with a prototypical commercial office building in a hot and cold climate using the DOE 2.1E building energy simulation program. Annual total energy use (ATE), peak electric demand (PED), average daylight illuminance (DI), and daylight glare index (DGI) were computed and compared to determine which combinations of fagade design and control strategies yielded the greatest energy efficiency, daylight amenity, and visual comfort.
Date: August 1, 2005
Creator: Tavil, Aslihan & Lee, Eleanor S.
System: The UNT Digital Library
Federal Participation in LEED in 2005 (open access)

Federal Participation in LEED in 2005

The federal government is an active participant in promotingsustainable design, construction and operations and in the use of USGBC'sLeadership in Energy and Environmental Design (LEED) Green BuildingRating System. This paper presents an overview of sustainableconstruction activities in the federal sector in 2005.
Date: November 1, 2005
Creator: Payne, Christopher & Dyer, Beverly
System: The UNT Digital Library
Small PV Systems Performance Evaluation at NREL's Outdoor Test Facility Using the PVUSA Power Rating Method (open access)

Small PV Systems Performance Evaluation at NREL's Outdoor Test Facility Using the PVUSA Power Rating Method

The PV Systems Performance and Reliability R & D group currently has seven grid-tied 1-2 kilowatt PV systems deployed at NREL's Outdoor Test Facility (OTF) and two 6 kilowatt systems mounted on the roof of NREL's Solar Energy Research Facility (SERF). The systems, which employ several PV module technologies including crystalline silicon (c-Si), amorphous silicon (a-Si), cadmium telluride (CdTe), and copper indium diselenide (CIS), are being monitored to determine the long-term performance and reliability of the modules and arrays under actual field conditions. The length of observation ranges from 2 months for our newest system to 11 years for our oldest systems. The annual degradation and seasonal fluctuation of the systems' power output are calculated using the PV for Utility-Scale Applications (PVUSA) power rating regression model.
Date: November 1, 2005
Creator: Adelstein, J. & Sekulic, W.
System: The UNT Digital Library
Synthesis of Mesostructured Copper Sulfide by Cation Exchange and Liquid Crystal Templating (open access)

Synthesis of Mesostructured Copper Sulfide by Cation Exchange and Liquid Crystal Templating

The development of synthetic pathways to yield advanced functional materials is an important aspect of materials science. In particular, the ability to control and manipulate the chemical composition and structure of inorganic nanomaterials is highly desirable. Two synthetic approaches which show great promise for producing the next generation of functional inorganic nanomaterials are (1) templating of supramolecular assemblies and (2) ion exchange within nanostructured inorganic solids to manipulate chemical composition. Templating of supramolecular assemblies of surfactants and amphiphilic polymers has already proven to be a powerful technique in synthesizing various inorganic structures. Namely, numerous examples of mesostructured metal oxides (SiO{sub 2}, TiO{sub 2}, WO{sub 3}, etc.) have been synthesized by templating the liquid crystalline phases of amphiphilic polymers and surfactants (i.e. vesicles, 2D and 3D hexagonal and cubic phases, etc.) with inorganic precursors, resulting in the formation of highly ordered inorganic-organic hybrid materials. Although the templating of supramolecular assemblies has been successful in generating highly ordered mesostructured metal oxides, there are only a few examples of non-oxidic mesostructured inorganic materials. The recent developments of ion exchange within nanoparticles offer a promising approach to generating novel nanostructured inorganic materials with unique chemical compositions. Konenkamp et al. and Alivisatos et al. have …
Date: August 1, 2005
Creator: Lubeck, C R; Doyle, F M; Gash, A E; Satcher, J H & Han, T Y
System: The UNT Digital Library
Redox Active Layer-by-Layer Structures containing MnO2 Nanoparticles (open access)

Redox Active Layer-by-Layer Structures containing MnO2 Nanoparticles

Nanoscale materials provide unique properties that will enable new technologies and enhance older ones. One area of intense activity in which nanoscale materials are being used is in the development of new functional materials for battery applications. This effort promises superior materials with properties that circumvent many of the problems associated with traditional battery materials. Previously we have worked on several approaches for using nanoscale materials for application as cathode materials in rechargeable Li batteries. Our recent work has focused on synthesizing MnO2 nanoparticles and using these in layer-by-layer (LbL) structures to probe the redox properties of the nanoparticles. We show that the aqueous colloidal nanoparticles produced by butanol reduction of tetramethylammonium permanganate can be trapped in thin films using a layer-by-layer deposition approach, and that these films are both redox active and exhibit kinetically facile electrochemical responses. We show cyclic voltammetry of MnO2 colloidal nanoparticles entrapped in a LbL thin film at an ITO electrode surface using poly(diallyldimethylammonium chloride) (PDDA). CV experiments demonstrate that Li+ insertion accompanies Mn(IV) reduction in LiClO4 supporting electrolytes, and that reduction is hindered in supporting electrolytes containing only tetrabutylammonium cations. We also show that electron propagation through multilayer films is facile, suggesting that electrons …
Date: February 1, 2005
Creator: Bazito, Fernanda; O'Brien, Robert & Buttry, Daniel A.
System: The UNT Digital Library
Update on the Southwest 1000 MW CSP Initiative (open access)

Update on the Southwest 1000 MW CSP Initiative

The 1000 MW CSP project was initiated in FY02 based on a Congressional request of the DOE to investigate the feasibility of 1000 MW of Concentrating Solar Power in the Southwest by 2006. The original charge has grown and involved a number of activities including: outreach to the SW states, support of state-level activities in NM, CA, and CO, and analysis in support of the Western Governors' Association (WGA) 30 GW Clean Energy Initiative.
Date: November 1, 2005
Creator: Mancini, T.; Mehos, M.; Wilkins, F. & Morse, F.
System: The UNT Digital Library
Strategic Planning of Communications and Knowledge Transfer for the Solar Energy Technologies Program (open access)

Strategic Planning of Communications and Knowledge Transfer for the Solar Energy Technologies Program

The goal of the Solar Communications Team is to get the right information to the right people at the right time in the right form at the right cost, and to measure the effectiveness of projects and our strategic communications plan. Our communications efforts in FY 2005 emphasized the following: 1) Reaching the Buildings and Consumer audiences (e.g., Solar Decathlon, International Builders' Show). 2) Developing and distributing critical program documents to key stakeholders (e.g., Solar Program Review Meeting Proceedings, Industry Roadmap, second Multi-Year Program Plan). 3) Conducting a gap analysis of communications products and evaluating their effectiveness. 4) Working with our program management to streamline business processes and improve communications of management expectations. 5) Developing and maintaining content for all Solar Program Web sites that reflect research and program accomplishments. 6) Representing the interests of the Solar Program at strategic events (technical conferences, meetings, workshops, community events).
Date: November 1, 2005
Creator: Pedigo, S.; Nahan, R.; Moon, S.; Gwinner, D.; Zuboy, J.; Brooks, C. et al.
System: The UNT Digital Library
PV Cell and Module Calibration Activities at NREL (open access)

PV Cell and Module Calibration Activities at NREL

The performance of PV cells and modules with respect to standard reference conditions is a key indicator of progress of a given technology. This task provides the U.S. terrestrial PV community with the most accurate measurements that are technically possible in a timely fashion. The international module certification and accreditation program PVGap requires certification laboratories to maintain their calibration traceability path to groups like this one. The politics of a "world record" efficiency requires that an independent laboratory perform these measurements for credibility. Most manufacturers base their module peak watt rating upon standards and reference cells calibrated under this task. This task has been involved in reconciling disputes between manufacturers and their cell suppliers in terms of expected versus actual performance. This task has also served as a resource to the PV community for consultation on solar simulation, current versus voltage measurement instrumentation, measurement procedures and measurement artifacts.
Date: November 1, 2005
Creator: Emery, K.; Anderberg, A.; Kiehl, J.; Mack, C.; Moriarty, T.; Ottoson, L. et al.
System: The UNT Digital Library
Reactive Spreading of a Lead-Free Solder on Alumina (open access)

Reactive Spreading of a Lead-Free Solder on Alumina

The wetting of Sn3Ag-based alloys on Al{sub 2}O{sub 3} has been studied using the sessile-drop configuration. Small additions of Ti decrease the contact angle of Sn3Ag alloys on alumina from 115 to 23 degrees. Adsorption of Ti-species at the solid-liquid interface prior to reaction is the driving force for the observed decrease in contact angle, and the spreading kinetics is controlled by the kinetics of Ti dissolution into the molten alloy. The addition of Ti increases the transport rates at the solid-liquid interface, resulting in the formation of triple-line ridges that pin the liquid front and promote a wide variability in the final contact angles.
Date: December 1, 2005
Creator: Gremillard, L.; Saiz, E.; Radmilovic, V.R. & Tomsia, A.P.
System: The UNT Digital Library
Development of a Large Aperture Nb3Sn Racetrack Quadrupole Magnet (open access)

Development of a Large Aperture Nb3Sn Racetrack Quadrupole Magnet

The U.S. LHC Accelerator Research Program (LARP), a collaboration between BNL, FNAL, LBNL, and SLAC, has among its major objectives the development of advanced magnet technology for an LHC luminosity upgrade. The LBNL Superconducting Magnet Group supports this program with a broad effort involving design studies, Nb{sub 3}Sn conductor development, mechanical models, and basic prototypes. This paper describes the development of a large aperture Nb{sub 3}Sn racetrack quadrupole magnet using four racetrack coils from the LBNL Subscale Magnet (SM) Program. The magnet provides a gradient of 95 T/m in a 110 mm bore, with a peak field in the conductor of 11.2 T. The coils are pre-stressed by a mechanical structure based on a pre-tensioned aluminum shell, and axially supported with aluminum rods. The mechanical behavior has been monitored with strain gauges and the magnetic field has been measured. Results of the test are reported and analyzed.
Date: June 1, 2005
Creator: Ferracin, Paolo; Bartlett, Scott E.; Caspi, Shlomo; Dietderich, Daniel R.; Gourlay, Steve A.; Hannaford, Charles R. et al.
System: The UNT Digital Library
Current-Drive Efficiency in a Degenerate Plasma (open access)

Current-Drive Efficiency in a Degenerate Plasma

a degenerate plasma, the rates of electron processes are much smaller than the classical model would predict, affecting the efficiencies of current generation by external non-inductive means, such as by electromagnetic radiation or intense ion beams. For electron-based mechanisms, the current-drive efficiency is higher than the classical prediction by more than a factor of 6 in a degenerate hydrogen plasma, mainly because the electron-electron collisions do not quickly slow down fast electrons. Moreover, electrons much faster than thermal speeds are more readily excited without exciting thermal electrons. In ion-based mechanisms of current drive, the efficiency is likewise enhanced due to the degeneracy effects, since the electron stopping power on slow ion beams is significantly reduced.
Date: November 1, 2005
Creator: Fisch, S. Son and N.J.
System: The UNT Digital Library
Extreme Ultraviolet Phase Contrast Imaging (open access)

Extreme Ultraviolet Phase Contrast Imaging

The conclusions of this report are: (1) zone plate microscopy provides high resolution imaging of EUV masks; (2) using phase plates in the back focal plane of the objective lens can provide contrast mechanisms for measurement of the phase shift from defects on the mask; (3) the first high resolution EUV Zernike phase contrast images have been acquired; and (4) future work will include phase contrast mode in reflection from an EUV mask to directly measure the reflectivity and phase shift from defects.
Date: November 1, 2005
Creator: Denbeaux, Gregory; Garg, Rashi; Aquila, Andy; Barty, Anton; Goldberg, Kenneth; Gullikson, Eric et al.
System: The UNT Digital Library
Performance evaluation of the SX-6 vector architecture forscientific computations (open access)

Performance evaluation of the SX-6 vector architecture forscientific computations

The growing gap between sustained and peak performance for scientific applications is a well-known problem in high performance computing. The recent development of parallel vector systems offers the potential to reduce this gap for many computational science codes and deliver a substantial increase in computing capabilities. This paper examines the intranode performance of the NEC SX-6 vector processor, and compares it against the cache-based IBMPower3 and Power4 superscalar architectures, across a number of key scientific computing areas. First, we present the performance of a microbenchmark suite that examines many low-level machine characteristics. Next, we study the behavior of the NAS Parallel Benchmarks. Finally, we evaluate the performance of several scientific computing codes. Overall results demonstrate that the SX-6 achieves high performance on a large fraction of our application suite and often significantly outperforms the cache-based architectures. However, certain classes of applications are not easily amenable to vectorization and would require extensive algorithm and implementation reengineering to utilize the SX-6 effectively.
Date: January 1, 2005
Creator: Oliker, Leonid; Canning, Andrew; Carter, Jonathan Carter; Shalf,John; Skinner, David; Ethier, Stephane et al.
System: The UNT Digital Library