23,099 Matching Results

Results open in a new window/tab.

0.52eV Quaternary InGaAsSb Thermophotovoltaic Diode Technology (open access)

0.52eV Quaternary InGaAsSb Thermophotovoltaic Diode Technology

Thermophotovoltaic (TPV) diodes fabricated from 0.52eV lattice-matched InGaAsSb alloys are grown by Metal Organic Vapor Phase Epitaxy (MOVPE) on GaSb substrates. 4cm{sup 2} multi-chip diode modules with front-surface spectral filters were tested in a vacuum cavity and attained measured efficiency and power density of 19% and 0.58 W/cm{sup 2} respectively at operating at temperatures of T{sub radiator} = 950 C and T{sub diode} = 27 C. Device modeling and minority carrier lifetime measurements of double heterostructure lifetime specimens indicate that diode conversion efficiency is limited predominantly by interface recombination and photon energy loss to the GaSb substrate and back ohmic contact. Recent improvements to the diode include lattice-matched p-type AlGaAsSb passivating layers with interface recombination velocities less than 100 cm/s and new processing techniques enabling thinned substrates and back surface reflectors. Modeling predictions of these improvements to the diode architecture indicate that conversion efficiencies from 27-30% and {approx}0.85 W/cm{sup 2} could be attained under the above operating temperatures.
Date: June 9, 2004
Creator: Dashiell, M. W.; Beausang, J. F.; Nichols, G.; Depoy, D. M.; Danielson, L. R.; Ehsani, H. et al.
Object Type: Report
System: The UNT Digital Library
1.5-GEV FFAG ACCELERATOR AS INJECTOR TO THE BNL-AGS. (open access)

1.5-GEV FFAG ACCELERATOR AS INJECTOR TO THE BNL-AGS.

A 1.5-GeV Fixed-Field Alternating-Gradient (FFAG) proton Accelerator is being studied as a new injector to the Alternating-Gradient Synchrotron (AGS) of Brookhaven National Laboratory (BNL). The major benefit is that it would considerably shorten the overall AGS acceleration cycle, and, consequently, may yield to an improvement of beam stability, intensity and size. The AGS-FFAG will also facilitate the proposed upgrade of the AGS facility toward a 1-MW average proton beam power at the top energy of 28 GeV. This paper describes the FFAG design for acceleration of protons from 400 MeV to 1.5 GeV, with the same circumference of the AGS, and entirely housed in the AGS tunnel.
Date: July 5, 2004
Creator: Ruggiero, A. G.; Blaskiewicz, M.; Trbojevic, D.; Tsoupas, N. & Zhang, W.
Object Type: Article
System: The UNT Digital Library
1.5-GeV FFAG Accelerator for the AGS Facility (open access)

1.5-GeV FFAG Accelerator for the AGS Facility

N/A
Date: February 1, 2004
Creator: Ruggiero, A. G.; Blaskiewicz, M.; Courant, E.; Trbojevic, D.; Tsoupas, N. & Zhang, W.
Object Type: Report
System: The UNT Digital Library
01-ERD-111 - The Development of Synthetic High Affinity Ligands (open access)

01-ERD-111 - The Development of Synthetic High Affinity Ligands

The aim of this project was to develop Synthetic High-Affinity Ligands (SHALs), which bind with high affinity and specificity to proteins of interest for national security and cancer therapy applications. The aim of producing synthetic ligands for sensory devices as an alternative to antibody-based detection assays and therapeutic agents is to overcome the drawbacks associated with antibody-based in next-generation sensors and systems. The focus area of the project was the chemical synthesis of the SHALs. The project concentrated on two different protein targets. (a) The C fragment of tetanus and botulinum toxin, potential biowarfare agents. A SHAL for tetanus or botulinum toxin would be incorporated into a sensory device for the toxins. (b) HLA-DR10, a protein found in high abundance on the surface of Non-Hodgkins Lymphoma. A SHAL specific to a tumor marker, labeled with a radionuclide, would enable the targeted delivery of radiation therapy to metastatic disease. The technical approach used to develop a SHAL for each protein target will be described in more detail below. However, in general, the development of a SHAL requires a combination of computational modeling techniques, modern nuclear magnetic resonance spectroscopy (NMR) and synthetic chemistry.
Date: February 5, 2004
Creator: Perkins, J; Balhorn, R; Cosman, M; Lightstone, F & Zeller, L
Object Type: Report
System: The UNT Digital Library
A 1-Joule laser for a 16-fiber injection system (open access)

A 1-Joule laser for a 16-fiber injection system

A 1-J laser was designed to launch light down 16, multi-mode fibers (400-{micro}m-core dia.). A diffractive-optic splitter was designed in collaboration with Digital Optics Corporation (DOC), and was delivered by DOC. Using this splitter, the energy injected into each fiber varied <1%. The spatial profile out of each fiber was such that there were no ''hot spots,'' a flyer could successfully be launched and a PETN pellet could be initiated. Preliminary designs of the system were driven by system efficiency where a pristine TEM{sub 00} laser beam would be required. The laser is a master oscillator, power amplifier (MOPA) consisting of a 4-mm-dia. Nd:YLF rod in the stable, q-switched oscillator and a 9.5-mm-dia. Nd:YLF rod in the double-passed amplifier. Using a TEM{sub 00} oscillator beam resulted in excellent transmission efficiencies through the fibers at lower energies but proved to be quite unreliable at higher energies, causing premature fiber damage, flyer plate rupture, stimulated Raman scattering (SRS), and stimulated Brillouin scattering (SBS). Upon further investigation, it was found that both temporal and spatial beam formatting of the laser were required to successfully initiate the PETN. Results from the single-mode experiments, including fiber damage, SRS and SBS losses, will be presented. In …
Date: April 6, 2004
Creator: Honig, J.
Object Type: Article
System: The UNT Digital Library
1 Outreach, Education and Domestic Market Enhancement 2 Export Promotion and Assistance (open access)

1 Outreach, Education and Domestic Market Enhancement 2 Export Promotion and Assistance

Geothermal Energy Association supports the US geothermal industry in its efforts to bring more clean geothermal energy on-line throughout the world. Activities designed to accomplish this goal include: (1) developing and maintaining data bases, web pages, (2) commissioning of special studies and reports, (3) preparing, printing and distributing brochures and newsletters, (4) developing exhibits and displays, and participating in trade shows, (5) designing, producing and disseminating audio-video materials, (6) monitoring and coordinating programs carried out by US DOE and other Federal agencies, (7) holding workshops to facilitate communication between researchers and industry and to encourage their recognition of emerging markets for geothermal technology, (8) attending conferences, making speeches and presentation, and otherwise interacting with environmental and other renewable energy organizations and coalitions, (9) hosting events in Washington, DC and other appropriate locations to educate Federal, State and local representatives, environmental groups, the news media, and other about the status and potential of geothermal energy, (10) conducting member services such as the preparation and distribution of a member newsletter related to operating and maintaining s useful and viable association, and (11) performing similar kinds of activities designed to inform others about geothermal energy. The activities of the export promotion aim to …
Date: March 15, 2004
Creator: Geothermal Energy Association
Object Type: Report
System: The UNT Digital Library
2-D Imaging of Electron Temperature in Tokamak Plasmas (open access)

2-D Imaging of Electron Temperature in Tokamak Plasmas

By taking advantage of recent developments in millimeter wave imaging technology, an Electron Cyclotron Emission Imaging (ECEI) instrument, capable of simultaneously measuring 128 channels of localized electron temperature over a 2-D map in the poloidal plane, has been developed for the TEXTOR tokamak. Data from the new instrument, detailing the MHD activity associated with a sawtooth crash, is presented.
Date: July 8, 2004
Creator: Munsat, T.; Mazzucato, E.; Park, H.; Domier, C. W.; Johnson, M.; Luhmann, N. C. Jr. et al.
Object Type: Report
System: The UNT Digital Library
2-MV electrostatic quadrupole injector for heavy-ion fusion (open access)

2-MV electrostatic quadrupole injector for heavy-ion fusion

High current and low emittance are principal requirements for heavy-ion injection into a linac driver for inertial fusion energy. An electrostatic quadrupole (ESQ) injector is capable of providing these high charge density and low emittance beams. We have modified the existing 2-MV Injector to reduce beam emittance and to double the pulse length. We characterize the beam delivered by the modified injector to the High Current Transport Experiment (HCX) and the effects of finite rise time of the extraction voltage pulse in the diode on the beam head. We demonstrate techniques for mitigating aberrations and reducing beam emittance growth in the injector.
Date: November 10, 2004
Creator: Bieniosek, F. M.; Celata, C. M.; Henestroza, E.; Kwan, J. W.; Prost, L. & Seidl, P. A.
Object Type: Article
System: The UNT Digital Library
$3.6 Million in Savings Identified in AMCAST Assessment (Revised) (open access)