Degree Department

Degree Level

Integrating Concepts in Modern Molecular Biology into a High School Biology Curriculum

Access: Use of this item is restricted to the UNT Community
More so than any other science in the past several decades, Biology has seen an explosion of new information and monumental discoveries that have had a profound impact on much more than the science itself. Much of this has occurred at the molecular level. Many of these modern concepts, ideas, and technologies, as well as their historical context, can be easily understood and appreciated at the high school level. Moreover, it is argued here that the integration of this is critical for making biology relevant as a modern science. A contemporary high school biology curriculum should adequately reflect this newly acquired knowledge and how it has already has already begun to revolutionize medicine, agriculture, and the study of biology itself. This curriculum provides teachers with a detailed framework for integrating molecular biology into a high school biology curriculum. It is not intended to represent the curriculum for an entire academic year, but should be considered a significant component. In addition to examining key concepts and discoveries, it examines modern molecular techniques, their applications, and their relevance to science and beyond. It also provides several recommended labs and helpful protocols.
Date: August 2003
Creator: Parker, Timothy P.
System: The UNT Digital Library
Laboratory and field studies of cadmium effects on  Hyalella azteca in effluent dominated systems. (open access)

Laboratory and field studies of cadmium effects on Hyalella azteca in effluent dominated systems.

Laboratory single-species toxicity tests are used to assess the effects of contaminants on aquatic biota. Questions remain as to how accurately these controlled toxicity tests predict sitespecific bioavailability and effects of metals. Concurrent 42-day Hyalella azteca exposures were performed with cadmium and final treated municipal effluent in the laboratory and at the University of North Texas Stream Research Facility. Further laboratory testing in reconstituted hard water was also conducted. Endpoints evaluated include survival, growth, reproduction, and Cd body burden. My results demonstrate that laboratory toxicity tests may overestimate toxicity responses to cadmium when compared to effluent dominated stream exposures. Discrepancies between endpoints in the three tests likely resulted from increased food sources and decreased cadmium bioavailability in stream mesocosms
Date: August 2003
Creator: Stanley, Jacob K.
System: The UNT Digital Library