Degree Discipline

Analysis and expression of the cotton gene for the D-12 fatty acid desaturases 2-4 (FAD2-4) (open access)

Analysis and expression of the cotton gene for the D-12 fatty acid desaturases 2-4 (FAD2-4)

A genomic clone containing a 16.9-kb segment of cotton DNA was found to encompass a D-12 fatty acid desaturases (FAD2-4) gene. The FAD2-4 gene has a single, large intron of 2,780 bp in its 5'-untranslated region, just 12 bp upstream from the ATG initiation codon of the FAD2-4 opening reading frame. A number of prospective promoter elements, including several light-responsive sequences, occur in the 5'-flanking region. The coding region of the gene is 1155 bp with no introns, and would encode a FAD2-4 polypeptide of 384 amino acids. The putative protein had four membrane-spanning helices, hallmarks of an integral membrane protein, and would probably be located in the endoplasmic reticulum. The FAD2-4 gene is indeed a functional gene, since yeast cells transformed with a plasmid containing the coding region of the gene synthesize an appreciable amount of linoleic acid (18:2), not normally made in wild-type yeast cells. The FAD2-4 gene has many structural similarities to the cotton FAD2-3 gene that was also analyzed in this laboratory.
Date: August 2003
Creator: Park, Stacy J.
System: The UNT Digital Library
Applications of Remote Sensing and GIS to Modeling Fire for Vegetative Restoration in Northern Arizona (open access)

Applications of Remote Sensing and GIS to Modeling Fire for Vegetative Restoration in Northern Arizona

An accurate fire model is a useful tool in predicting the behavior of a prescribed fire. Simulation of fire requires an extensive amount of data and can be accomplished best using GIS applications. This paper demonstrates integrative procedures of using of ArcGIS™, ERDAS Imagine™, GPS, and FARSITE© to predict prescribed fire behavior on the Kaibab-Paiute Reservation. ArcGIS was used to create a database incorporating all variables into a common spatial reference system and format for the FARSITE model. ArcGIS Spatial Analyst was then used to select optimal burn sites for simulation. Our predictions will be implemented in future interagency efforts towards vegetative restoration on the reservation.
Date: August 2003
Creator: Hardison, Tanya
System: The UNT Digital Library