3,002 Matching Results

Results open in a new window/tab.

2.5 MHz feedforward beam loading compensation in the Fermilab Main Injector (open access)

2.5 MHz feedforward beam loading compensation in the Fermilab Main Injector

There are five 2.5 MHz ferrite cavities (h = 28) in the Main Injector with an R/Q of 500 that are presently used for coalescing for the Tevatron. For use with the Fermilab Recycler, feedforward (FF) beam loading compensation (BLC) is required on these cavities because they will be required to operate at a net of 2 kV. Under current Recycler beam conditions, the beam-induced voltage is of this order. Recently a system using a digital bucket delay module operating at 53 MHz (h = 588) was used to produce a one-turn-delay feedforward signal. This signal was then combined with the low level RF signal to the 2.5 MHz cavities to cancel the beam induced voltage. During current operation they have shown consistently to operate with over a 20 dB reduction in beam loading.
Date: May 19, 2003
Creator: Dey, Joseph E.; Kourbanis, Ioanis & Steimel, James
System: The UNT Digital Library
2 MW upgrade of the Fermilab Main Injector (open access)

2 MW upgrade of the Fermilab Main Injector

In January 2002, the Fermilab Director initiated a design study for a high average power, modest energy proton facility. An intensity upgrade to Fermilab's 120-GeV Main Injector (MI) represents an attractive concept for such a facility, which would leverage existing beam lines and experimental areas and would greatly enhance physics opportunities at Fermilab and in the U.S. With a Proton Driver replacing the present Booster, the beam intensity of the MI is expected to be increased by a factor of five. Accompanied by a shorter cycle, the beam power would reach 2 MW. This would make the MI a more powerful machine than the SNS or the J-PARC. Moreover, the high beam energy (120 GeV) and tunable energy range (8-120 GeV) would make it a unique high power proton facility. The upgrade study has been completed and published. This paper gives a summary report.
Date: June 4, 2003
Creator: Chou, Weiren
System: The UNT Digital Library
2-pi Photoproduction from CLAS and CB-ELSA - The Search for Missing Resonances (open access)

2-pi Photoproduction from CLAS and CB-ELSA - The Search for Missing Resonances

2-pi-photoproduction is one of the promising reactions to search for baryon resonances that have been predicted but have not yet been observed. The gamma-rho --> rho-pi{sup 0}-pi{sup 0}(CB-ELSA) and the gamma-rho --> rho-pi{sup +}-pi{sup -} (CLAS) data show interesting resonance structures. A partial wave analysis (PWA) has to be done to determine which baryon resonances contribute what their quantum numbers and their relative couplings to the different accessible rho-2-pi-channels and to the photon are. First preliminary PWA-results on the lowest energy rho-pi{sup 0}-pi{sup 0} data (sq rt s<1.8 GeV)look very promising. From an extension of this analysis to higher energies combining the rho-pi{sup 0}-pi{sup 0} and the rho-pi{sup +}-pi{sup -}-data, one can expect; interesting results on resonances decaying into Delta-pi, N-rho, N(pi-pi)s, N*-pi, and Delta*-pi.
Date: October 1, 2003
Creator: Thoma, Ulrike
System: The UNT Digital Library
3-D full waveform inversion of seismic data; Part I. Theory (open access)

3-D full waveform inversion of seismic data; Part I. Theory

Full waveform inversion of seismic data is a challenging subject partly because of the lack of precise knowledge of the source. Since currently available approaches involve some form of approximations to the source, inversion results are subject to the quality and the choice of the source information used. A new full waveform inversion scheme has been introduced (Lee and Kim, 2003) using normalized wavefield for simple two-dimensional (2-D) scalar problems. The method does not require source information, so potential inversion errors due to source estimation may be eliminated. A gather of seismic traces is first Fourier-transformed into the frequency domain and a normalized wavefield is obtained for each trace in the frequency domain. Normalization is done with respect to the frequency response of a reference trace selected from the gather, so the complex-valued normalized wavefield is source-independent and dimensionless. The inversion algorithm minimizes misfits between measured normalized wavefield and numerically computed normalized wavefield. In this paper the full waveform inversion is extended to three-dimensional (3-D) problems.
Date: May 12, 2003
Creator: Lee, Ki Ha
System: The UNT Digital Library
A 3-Dimensional discrete fracture network generator to examine fracture-matrix interaction using TOUGH2 (open access)

A 3-Dimensional discrete fracture network generator to examine fracture-matrix interaction using TOUGH2

Water fluxes in unsaturated, fractured rock involve the physical processes occurring at fracture-matrix interfaces within fracture networks. Modeling these water fluxes using a discrete fracture network model is a complicated effort. Existing preprocessors for TOUGH2 are not suitable to generate grids for fracture networks with various orientations and inclinations. There are several 3-D discrete-fracture-network simulators for flow and transport, but most of them do not capture fracture-matrix interaction. We have developed a new 3-D discrete-fracture-network mesh generator, FRACMESH, to provide TOUGH2 with information about the fracture network configuration and fracture-matrix interactions. FRACMESH transforms a discrete fracture network into a 3 dimensional uniform mesh, in which fractures are considered as elements with unique rock material properties and connected to surrounding matrix elements. Using FRACMESH, individual fractures may have uniform or random aperture distributions to consider heterogeneity. Fracture element volumes and interfacial areas are calculated from fracture geometry within individual elements. By using FRACMESH and TOUGH2, fractures with various inclinations and orientations, and fracture-matrix interaction, can be incorporated. In this paper, results of flow and transport simulations in a fractured rock block utilizing FRACMESH are presented.
Date: April 9, 2003
Creator: Ito, Kazumasa & Yongkoo, Seol
System: The UNT Digital Library
''6-Degrees of Freedom'' Single Crystal Plasticity Experiments (open access)

''6-Degrees of Freedom'' Single Crystal Plasticity Experiments

A deformation experiment has been developed specifically for the purpose of validation of dislocation dynamics simulations of plastic flow up to strains on the order of 1% [1]. The experiment has been designed so that a compressive uniaxial stress field is essentially super imposed on the test sample, and the crystal is free to deform with 3 orthogonal translation directions, and 3 rotation/tilt axes of freedom and has been given the name ''6-degrees of freedom'' (6DOF) experiment. The rotation, tilt and translation of the crystal are monitored by 5 laser displacement gages and 3 extensometers. Experiments are being performed on high purity Mo single crystals orientated for ''single slip''. All of the experiments are performed in pairs, with one test sample having highly polished surfaces for optical light and AFM slip-trace analyses, and the other having 4 strain gage rosettes mounted on the sides for measurement of the bi-axial surface strains during testing. All of the experimental data is used together to determine the slip activity of the orientated single crystal during deformation. Experimental results on high-purity Mo single crystals are presented. The results of these experiments show that slip behavior is in substantial deviation from the expected ''Schmid'' behavior. …
Date: May 21, 2003
Creator: Lassila, D. H.; Florando, J. N.; LeBlanc, M. M.; Arsenlis, T. & Rhee, M.
System: The UNT Digital Library
An 8-GeV Synchrotron-Based Proton Driver (open access)

An 8-GeV Synchrotron-Based Proton Driver

In January 2002, the Fermilab Director initiated a design study for a high average power, modest energy proton facility. Such a facility is a possible candidate for a construction project in the U.S. starting in the middle of this decade. The key technical element is a new machine, dubbed the ''Proton Driver,'' as a replacement of the present Booster. The study of an 8-GeV synchrotron-based proton driver has been completed and published. This paper will give a summary report, including machine layout and performance, optics, beam dynamics issues, technical systems design, civil construction, cost estimate and schedule.
Date: June 4, 2003
Creator: Chou, Weiren
System: The UNT Digital Library
8-oxoguainine enhances bending of DNA that favors binding of glycosylases (open access)

8-oxoguainine enhances bending of DNA that favors binding of glycosylases

Molecular dynamics (MD) simulations were carried out on the DNA oligonucleotide GGGAACAACTAG:CTAGTTGTTCCC in its native form and with guanine in the central G19:C6 base pair replaced by 8-oxoguanine (8oxoG). A box of explicit water molecules was used for solvation and Na+ counterions were added to neutralize the system. The direction and magnitude of global bending were assessed by a technique used previously to analyze simulations of DNA containing a thymine dimer. The presence of 8oxoG did not greatly affect the magnitude of DNA bending; however, bending into the major groove was significantly more probable when 8oxoG replaced G19. Crystal structures of glycosylases bound to damaged-DNA substrates consistently show a sharp bend into the major groove at the damage site. We conclude that changes in bending dynamics that assist the formation of this kink are a part of the mechanism by which glycosylases of the base excision repair pathway recognize the presence of 8oxoG in DNA.
Date: April 23, 2003
Creator: Miller, John H.
System: The UNT Digital Library
A 14.6 Arcsecond Quasar Lens Split by a Massive Dark Matter Halo (open access)

A 14.6 Arcsecond Quasar Lens Split by a Massive Dark Matter Halo

Gravitational lensing is a powerful tool to study the distribution of dark matter in the universe. The cold dark matter model of structure formation predicts the existence of quasars gravitationally lensed by concentrations of dark matter so massive that the quasar images would be split by over 7 inches. However, numerous searches for large-separation lensed quasars have been unsuccessful; all of the roughly 70 lensed quasars known to date, such as Q0957+561, have smaller splittings, and can be explained in terms of galaxy scale concentrations of baryonic matter that have undergone dissipative collapse. Here they report the discovery of the first large-separation lensed quasar, SDSS J1004+4112, with a maximum separation of 14.62 inches; at this separation, the lensing object must be dominated by dark matter. While gravitationally lensed galaxies of even large separation are known, large-separation quasars are more useful cosmological probes because of the simplicity of the resulting lens systems. The discovery in their current quasar sample is fully consistent with the theoretical expectations based on the cold dark matter model.
Date: December 4, 2003
Creator: Inada, N.; Oguri, M.; Pindor, B.; Hennawi, J.; Chiu, K.; Zheng, W. et al.
System: The UNT Digital Library
20-100 keV K(alpha) X-Ray Source Generation by Short Pulse High Intensity Lasers (open access)

20-100 keV K(alpha) X-Ray Source Generation by Short Pulse High Intensity Lasers

We are studying the feasibility of utilizing K{alpha} x-ray sources in the range of 20 to 100 keV as a backlighters for imaging various stages of implosions and high areal density planar samples driven by the NIF laser facility. The hard x-ray K{alpha} sources are created by relativistic electron plasma interactions in the target material after a radiation by short pulse high intensity lasers. In order to understand K{alpha} source characteristics such as production efficiency and brightness as a function of laser parameters, we have performed experiments using the 10 J, 100 fs JanUSP laser. We utilized single-photon counting spectroscopy and x-ray imaging diagnostics to characterize the K{alpha} source. We find that the K{alpha} conversion efficiency from the laser energy is {approx} 3 x 10{sup -4}.
Date: August 22, 2003
Creator: Park, H. S.; Koch, J. A.; Landen, O. L.; Phillips, T. W. & Goldsack, T.
System: The UNT Digital Library
40 YEARS OF EXPERIENCE WITH LIQUID-LIQUID EXTRACTION EQUIPMENT IN THE NUCLEAR INDUSTRY (open access)

40 YEARS OF EXPERIENCE WITH LIQUID-LIQUID EXTRACTION EQUIPMENT IN THE NUCLEAR INDUSTRY

Three types of liquid-liquid extraction equipment are used in industrial reprocessing plants. Each is described below, with a special focus on pulsed columns and centrifugal extractors, which have been the subject of an extensive R&D program by the French Atomic Energy Commission (CEA). Various models have been developed to simulate equipment behavior and flowsheets. The excellent results obtained during industrial operation of the UP3 and UP2-800 plants in La Hague have confirmed the validity of the choices made during the design phases and pave the way for future improvement of the reprocessing process, from a technical and a financial standpoint.
Date: February 27, 2003
Creator: Drain, F.; Vinoche, R. & Duhamet, J.
System: The UNT Digital Library
A 50 kV solid state multipulse kicker modulator (open access)

A 50 kV solid state multipulse kicker modulator

Performance requirements, design concepts, and test results for a prototype multipulse kicker modulator based on solid-state switches and a voltage-adding transformer topology are described. Tape-wound cores are stacked to form the transformer primary windings and a cylindrical pipe that passes through the circular inner diameters of the cores serves as the secondary winding of the step-up transformer. Boards containing MOSFET switches, trigger circuitry, and energy-storage capacitors plug into the core housings. A 50 kV prototype modulator that meets most of the facility requirements has been designed, fabricated, and tested at LLNL. More recent work has been concerned with designing and testing cores and boards with the full volt-second capability needed for 24-pulse operation. Results of the 50 kV prototype tests, preliminary tests of the full-volt-second cores and boards, and future development needs are described.
Date: January 1, 2003
Creator: Walstrom, P. L. (Peter L.) & Cook, E. G. (Edward G.)
System: The UNT Digital Library
53 MHZ Feedforward beam loading compensation in the Fermilab main injector (open access)

53 MHZ Feedforward beam loading compensation in the Fermilab main injector

53 MHz feedforward beam loading compensation is crucial to all operations of the Main Injector. Recently a system using a fundamental frequency down converter mixer, a digital bucket delay module and a fundamental frequency up converter mixer were used to produce a one-turn-delay feedforward signal. This signal was then combined with the low level RF signal to the cavities to cancel the transient beam induced voltage. During operation they have shown consistently over 20 dB reduction in side-band voltage around the fundamental frequency during Proton coalescing and over 14 dB in multi-batch antiproton coalescing.
Date: May 19, 2003
Creator: al., Joseph E Dey et
System: The UNT Digital Library
THE 110 GHz MICROWAVE HEATING SYSTEM ON THE DIII-D TOKAMAK (open access)

THE 110 GHz MICROWAVE HEATING SYSTEM ON THE DIII-D TOKAMAK

OAK-B135 Six 110 GHz gyrotrons in the 1 MW class are operational on DIII-D. Source power is > 4.0 MW for pulse lengths {le} 2.1 s and {approx} 2.8 MW for 5.0 s. The rf beams can be steered poloidally across the tokamak upper half plane at off-perpendicular injection angles in the toroidal direction up to {+-} 20{sup o}. measured transmission line loss is about -1 dB for the longest line, which is 92 m long with 11 miter bends. Coupling efficiency into the waveguide is {approx} 93% for the Gaussian rf beams. The transmission lines are evacuated and windowless except for the gyrotron output window and include flexible control of the elliptical polarization of the injected rf beam with remote controlled grooved mirrors in two of the miter bends on each line. The injected power can be modulated according to a predetermined program or controlled by the DIII-D plasma control system using real time feedback based on diagnostic signals obtained during the plasma pulse. Three gyrotrons have operated at 1.0 MW output power for 5.0 s. Peak central temperatures of the artificially grown diamond gyrotron output windows are < 180 C at equilibrium.
Date: July 2003
Creator: Lohr, J.; Callis, R. W.; Doane, J. L.; Ellis, R. A.; Gorelov, Ya; Kajiwara, K. et al.
System: The UNT Digital Library
A 201 MHz RF cavity design with non-stressed pre-curved Be windows for muon cooling channels (open access)

A 201 MHz RF cavity design with non-stressed pre-curved Be windows for muon cooling channels

We present a 201-MHz RF cavity design for muon cooling channels with non-stressed and pre-curved Be foils to terminate the beam apertures. The Be foils are necessary to improve the cavity shunt impedance with large beam apertures needed for accommodating large transverse size muon beams. Be is a low-Z material with good electrical and thermal properties. It presents an almost transparent window to muon beams, but terminates the RF cavity electro-magnetically. Previous designs use pre-stressed flat Be foils in order to keep cavity from detuning resulted from RF heating on the window surface. Be foils are expensive, and it is difficult to make them under desired tension. An alternative design is to use precurved and non-stressed Be foils where the buckling direction is known, and frequency shifts can be properly predicted. We will present mechanical simulations on the Be foils in this paper.
Date: May 1, 2003
Creator: Li, Derun; Ladran, A.; Staples, J.; Virostek, S.; Zisman, M.; Lau, W. et al.
System: The UNT Digital Library
12th Workshop on Crystalline Silicon Solar Cell Materials and Processes: Summary Discussion Sessions (open access)

12th Workshop on Crystalline Silicon Solar Cell Materials and Processes: Summary Discussion Sessions

This report is a summary of the discussion sessions of the 12th Workshop on Crystalline Silicon Solar Cells and Processes. The theme of the workshop was"Fundamental R&D in c-Si: Enabling Progress in Solar-Electric Technology." This theme was chosen to reflect a concern that the current expansion in the PV energy production may redirect basic research efforts to production-oriented issues. The PV industry is installing added production capacity and new production lines that include the latest technologies. Once the technologies are selected, it is difficult to make changes. Consequently, a large expansion can stagnate the technologies and diminish interest in fundamental research. To prevent the fundamental R&D program from being overwhelmed by the desire to address immediate engineering issues, there is a need to establish topics of fundamental nature that can be pursued by the universities and the research institutions. Hence, one of the objectives of the workshop was to identify such areas for fundamental research.
Date: February 1, 2003
Creator: Sopori, B.; Swanson, D.; Sinton, R. & Tan, T.
System: The UNT Digital Library
2001 - 2002 Upper Three Runs Sequence of Earthquakes at the SRS, South Carolina (open access)

2001 - 2002 Upper Three Runs Sequence of Earthquakes at the SRS, South Carolina

On October 08, 2001 a small felt earthquake occurred near Upper Three Runs Creek in the north central area of the Savannah River Site, South Carolina. Seven very small aftershocks followed the main event with the last one occurring March 06, 2002. All activity occurred within a small area. Further analysis of collected data indicates a correlation of this low level seismic activity with a small northwest trending structure observed in detailed gravity and magnetic data. Both single event and composite focal mechanisms were derived using local and regional stations. Results indicated predominantly dip-slip motion along a fault striking NNW at 335 degrees and dipping 41 degrees to the southwest. A 3D plot of the eight hypocenters clearly defines a fault plane nearly analogous to that obtained from the focal solutions. The Upper Three Runs series of events is another example of a separate class of earthquakes that occur within the central Piedmont and upper Coastal Plain of South Carolina. The Upper Three Runs sequence of events demonstrates that shallow intersections of structures interpreted from potential field data can be the foci for localized stress concentrations where microearthquake activity can occur. These earthquakes are attributable to small scale faults associated …
Date: October 16, 2003
Creator: Stevenson, Donald A.
System: The UNT Digital Library
2w Laser Propagation and Raman Backscatter in Underdense Gas Bag Plasmas (open access)

2w Laser Propagation and Raman Backscatter in Underdense Gas Bag Plasmas

Recent 2{omega} gasbag experiments on the Helen laser studied single-beam propagation and backscatter as a function of gas density. We present a comprehensive analysis of these experiments using simulations in HYDRA. Post-processed results agree well with experimental fast x-ray images (FXI) showing stable laser propagation across the bag. The measured total stimulated Raman backscatter (SRS) increases with initial gas density up to n{sub e} {approx} 0.08 n{sub c}, then decreases. Near-backscatter images (NBI) show that the decrease in total SRS with increasing density is not due to scatter outside of the collection optics. SRS gain spectra calculated from the HYDRA results agree well with experimental streak spectra. The tilt and spread in wavelength of the spectra appear to be explained by gasbag hydrodynamics only, with no need to invoke filamentation. Axial density gradients and laser pump absorption may combine to detune and limit SRS gain at high density.
Date: September 5, 2003
Creator: Meezan, N.; Divol, L.; Suter, L.; Miller, M.; Stevenson, R. M.; Slark, G. et al.
System: The UNT Digital Library
4th International Plant Biomechanics Conference Proceedings (Abstracts) (open access)

4th International Plant Biomechanics Conference Proceedings (Abstracts)

The 4th International Plant Biomechanics Conference facilitated an interdisciplinary exchange between scientists, engineers, and educators addressing the major questions encountered in the field of Plant Biomechanics. Subjects covered by the conference include: Evolution; Ecology; Mechanoreception; Cell Walls; Genetic Modification; Applied Biomechanics of Whole Plants, Plant Products, Fibers & Composites; Fluid Dynamics; Wood & Trees; Fracture Mechanics; Xylem Pressure & Water Transport; Modeling; and Introducing Plant Biomechanics in Secondary School Education.
Date: July 20, 2003
Creator: Telewski, Frank W.; Koehler, Lothar H. & Ewers, Frank W.
System: The UNT Digital Library
9th Diesel Engine Emissions Reduction (DEER) Workshop 2003 (open access)

9th Diesel Engine Emissions Reduction (DEER) Workshop 2003

The PowerTrap{trademark} is a non-exhaust temperature dependent system that cannot become blocked and features a controlled regeneration process independent of the vehicle's drive cycle. The system has a low direct-current power source requirement available in both 12-volt and 24-volt configurations. The system is fully programmable, fully automated and includes Euro IV requirements of operation verification. The system has gained European component-type approval and has been tested with both on- road and off-road diesel fuel up to 2000 parts per million. The device is fail-safe: in the event of a device malfunction, it cannot affect the engine's performance. Accumulated mileage testing is in excess of 640,000 miles to date. Vehicles include London-type taxicabs (Euro 1 and 2), emergency service fire engines (Euro 1, 2, and 3), inner city buses, and light-duty locomotives. Independent test results by Shell Global Solutions have consistently demonstrated 85-99 percent reduction of ultrafines across the 7-35 nanometer size range using a scanning mobility particle sizer with both ultra-low sulfur diesel and off-road high-sulfur fuel.
Date: August 24, 2003
Creator: Kukla, Peter; Wright, James; Harris, Georgina; Ball, Andrew & Gu, Fengshou
System: The UNT Digital Library
Ab initio calculations in a uniform magnetic field using periodic supercells (open access)

Ab initio calculations in a uniform magnetic field using periodic supercells

We present a formulation of ab initio electronic structure calculations in a finite magnetic field, which retains the simplicity and efficiency of techniques widely used in first principles molecular dynamics simulations, based on plane-wave basis sets and Fourier transforms. In addition we discuss results obtained with this method for the energy spectrum of interacting electrons in quantum wells, and for the electronic properties of dense fluid deuterium in a uniform magnetic field.
Date: October 21, 2003
Creator: Cai, W & Galli, G
System: The UNT Digital Library
Ab initio study of low energy electron collisions with ethylene (open access)

Ab initio study of low energy electron collisions with ethylene

None
Date: October 6, 2003
Creator: Trevisan, C. S.; Orel, A. E. & Rescigno, T. N.
System: The UNT Digital Library
An aberration corrected photoemission electron microscope at the advanced light source (open access)

An aberration corrected photoemission electron microscope at the advanced light source

Design of a new aberration corrected Photoemission electron microscope PEEM3 at the Advanced Light Source is outlined. PEEM3 will be installed on an elliptically polarized undulator beamline and will be used for the study of complex materials at high spatial and spectral resolution. The critical components of PEEM3 are the electron mirror aberration corrector and aberration-free magnetic beam separator. The models to calculate the optical properties of the electron mirror are discussed. The goal of the PEEM3 project is to achieve the highest possible transmission of the system at resolutions comparable to our present PEEM2 system (50 nm) and to enable significantly higher resolution, albeit at the sacrifice of intensity. We have left open the possibility to add an energy filter at a later date, if it becomes necessary driven by scientific need to improve the resolution further.
Date: November 1, 2003
Creator: Feng, J.; MacDowell, A. A.; Duarte, R.; Doran, A.; Forest, E.; Kelez, N. et al.
System: The UNT Digital Library
Above- and belowground competition from longleaf pine plantations limits performance of reintroduced herbaceous species. (open access)

Above- and belowground competition from longleaf pine plantations limits performance of reintroduced herbaceous species.

Although overstory trees limit the abundance and species richness of herbaceous vegetation in longleaf pine (Pinus palustris Mill.) plantations, the responsible mechanisms are poorly understood because of confounding among limiting factors. In fall 1998, research was initiated to determine the separate effects of above- and belowground competition and needlefall from overstory pines on understory plant performance. Three 13- to 15-yr-old plantations near Aiken, SC, were thinned to 0, 25, 50, or 100% of nonthinned basal area (19.5 m2 ha-1). Combinations of trenching (to eliminate root competition) and needlefall were applied to areas within each plot, and containerized seedlings of 14 perennial herbaceous species and longleaf pine were planted within each. Overstory crown closure ranged from 0 to 81%, and soil water and available nitrogen varied consistently with pine stocking, trenching, or their combination. Cover of planted species decreased an average of 16.5 and 14.1% as a result of above- and below-ground competition, respectively. Depending on species, needlefall effects were positive, negative, or negligible. Results indicate that understory restoration will be most successful when herbaceous species are established within canopy openings (0.1-0.2 ha) managed to minimize negative effects from above- and belowground competition and needlefall.
Date: October 1, 2003
Creator: Harrington, T. B.; Dagley, C. M. & Edwards., M. B.
System: The UNT Digital Library