7 Matching Results

Results open in a new window/tab.

Application of the Finite Element Method to Some Simple Systems in One and Two Dimensions. (open access)

Application of the Finite Element Method to Some Simple Systems in One and Two Dimensions.

The finite element method (FEM) is reviewed and applied to the one-dimensional eigensystems of the isotropic harmonic oscillator, finite well, infinite well and radial hydrogen atom, and the two-dimensional eigensystems of the isotropic harmonic oscillator and the propagational modes of sound in a rectangular cavity. Computer codes that I developed were introduced and utilized to find accurate results for the FEM eigensolutions. One of the computer codes was modified and applied to the one-dimensional unbound quantum mechanical system of a square barrier potential and also provided accurate results.
Date: May 2002
Creator: Hunnell, Jason C.
System: The UNT Digital Library

Approach to Quantum Information starting from Bell's Inequality (Part I) and Statistical Analysis of Time Series Corresponding to Complex Processes (Part II)

Access: Use of this item is restricted to the UNT Community
I: Quantum information obeys laws that subtly extend those governing classical information, making possible novel effect such as cryptography and quantum computation. Quantum computations are extremely sensitive to disruption by interaction of the computer with its environment, but this problem can be overcome by recently developed quantum versions of classical error-correcting codes and fault-tolerant circuits. Based on these ideas, the purpose of this paper is to provide an approach to quantum information by analyzing and demonstrating Bell's inequality and by discussing the problems related to decoherence and error-correcting. II: The growing need for a better understanding of complex processes has stimulated the development of new and more advanced data analysis techniques. The purpose of this research was to investigate some of the already existing techniques (Hurst's rescaled range and relative dispersion analysis), to develop a software able to process time series with these techniques, and to get familiar with the theory of diffusion processes.
Date: May 2002
Creator: Failla, Roberto
System: The UNT Digital Library
The Effect of Average Grain Size on Polycrystalline Diamond Films (open access)

The Effect of Average Grain Size on Polycrystalline Diamond Films

The work function of hydrogen-terminated, polycrystalline diamond was studied using ultraviolet photoelectron spectroscopy. Polycrystalline diamond films were deposited onto molybdenum substrates by electrophoresis for grain sizes ranging from 0.3 to 108 microns. The work function and electron affinity were measured using 21.2 eV photons from a helium plasma source. The films were characterized by x-ray photoelectron spectroscopy to determine elemental composition and the sp2/sp3 carbon fraction. The percentage of (111) diamond was determined by x-ray diffraction, and scanning electron microscopy was performed to determine average grain size. The measured work function has a maximum of 5.1 eV at 0.3 microns, and decreases to 3.2 eV at approximately 4 microns. Then the work function increases with increasing grain size to 4.0 eV at 15 microns and then asymptotically approaches the 4.8 eV work function of single crystal diamond at 108 microns. These results are consistent with a 3-component model in which the work function is controlled by single-crystal (111) diamond at larger grain sizes, graphitic carbon at smaller grain sizes, and by the electron affinity for the intervening grain sizes.
Date: May 2002
Creator: Abbott, Patrick Roland
System: The UNT Digital Library
The Effects of Cesium Deposition and Gas Exposure on the Field Emission Properties of Single Wall and Multiwall Carbon Nanotubes (open access)

The Effects of Cesium Deposition and Gas Exposure on the Field Emission Properties of Single Wall and Multiwall Carbon Nanotubes

The effects of Cs deposition on the field emission (FE) properties of single-walled carbon nanotube (SWNT) bundles were studied. In addition, a comparative study was made on the effects of O2, Ar and H2 gases on the field emission properties of SWNT bundles and multiwall carbon nanotubes (MWNTs). We observed that Cs deposition decreases the turn-on field for FE by a factor of 2.1 - 2.9 and increases the FE current by 6 orders of magnitude. After Cs deposition, the FE current versus voltage (I-V) curves showed non-Fowler-Nordheim behavior at large currents consistent with tunneling from adsorbate states. At lower currents, the ratio of the slope of the FE I-V curves before and after Cs deposition was approximately 2.1. Exposure to N2 does not decrease the FE current, while exposure to O2 decreases the FE current. Our results show that cesiated SWNT bundles have great potential as economical and reliable vacuum electron sources. We find that H2 and Ar gases do not significantly affect the FE properties of SWNTs or MWNTs. O2 temporarily reduces the FE current and increases the turn-on voltage of SWNTs. Full recovery of these properties occurred after operation in UHV. The higher operating voltages in an …
Date: May 2002
Creator: Wadhawan, Atul
System: The UNT Digital Library

Monte Carlo simulation and experimental studies of the production of neutron-rich medical isotopes using a particle accelerator.

Access: Use of this item is restricted to the UNT Community
The developments of nuclear medicine lead to an increasing demand for the production of radioisotopes with suitable nuclear and chemical properties. Furthermore, from the literature it is evident that the production of radioisotopes using charged-particle accelerators instead of nuclear reactors is gaining increasing popularity. The main advantages of producing medical isotopes with accelerators are carrier free radionuclides of short lived isotopes, improved handling, reduction of the radioactive waste, and lower cost of isotope fabrication. Proton-rich isotopes are the result of nuclear interactions between enriched stable isotopes and energetic protons. An interesting observation is that during the production of proton-rich isotopes, fast and intermediately fast neutrons from nuclear reactions such as (p,xn) are also produced as a by-product in the nuclear reactions. This observation suggests that it is perhaps possible to use these neutrons to activate secondary targets for the production of neutron-rich isotopes. The study of secondary radioisotope production with fast neutrons from (p,xn) reactions using a particle accelerator is the main goal of the research in this thesis.
Date: May 2002
Creator: Rosencranz, Daniela Necsoiu
System: The UNT Digital Library
A Study of Atomic Ordering in III-V Semiconductors (open access)

A Study of Atomic Ordering in III-V Semiconductors

Thesis written by a student in the UNT Honors College discussing semiconductors and band structure, the temperature-induced variation of the band structure, the atomic structure of III-V materials, atomic ordering of the band structure, and experimental techniques regarding atomic ordering of CuPt-B.
Date: Summer 2002
Creator: Cottier, Ryan J.
System: The UNT Digital Library
Theoretical Study of Second Harmonic Generation of a Blue Laser at 486 nm Using a BBO Crystal in a Standing Wave Buildup Cavity (open access)

Theoretical Study of Second Harmonic Generation of a Blue Laser at 486 nm Using a BBO Crystal in a Standing Wave Buildup Cavity

For a spectroscopy purpose, we are interested in producing continuous wave (CW) UV laser light at 243 nm with at least 2 mW power. The theory of nonlinear optics suggests that we should be able to produce a desired 2.9 mW of 243 nm light by second harmonic generation (SHG) from a 50 mW blue laser at 486 nm using a BBO crystal in a build up cavity. The most important physical parameters are calculated. A 10 mm Brewster cut BBO crystal can provide phase matching conditions for coupling two ordinary photons at 486 nm and make a secondary beam at 243 nm. The single pass conversion efficiency is calculated not to be enough to generate 2.9 mW of SH light. My investigation shows that a standing wave build up cavity can provide a buildup factor of 94 and an overall conversion efficiency of 5.9% if one use an input coupler mirror with 1.1% transmission at 486 nm.
Date: May 2002
Creator: Khademian, Ali
System: The UNT Digital Library