Degree Discipline

States

Phosphorus Retention and Fractionation in Masonry Sand and Light Weight Expanded Shale Used as Substrate in a Subsurface Flow Wetland

Access: Use of this item is restricted to the UNT Community
Constructed wetlands are considered an inefficient technology for long-term phosphorus (P) removal. The P retention effectiveness of subsurface wetlands can be improved by using appropriate substrates. The objectives of this study were to: (i) use sorption isotherms to estimate the P sorption capacity of the two materials, masonry sand and light weight expanded shale; (ii) describe dissolved P removal in small (2.7 m3) subsurface flow wetlands; (iii) quantify the forms of P retained by the substrates in the pilot cells; and (iv) use resulting data to assess the technical and economic feasibility of the most promising system to remove P. The P sorption capacity of masonry sand and expanded shale, as determined with Langmuir isotherms, was 60 mg/kg and 971 mg/kg respectively. In the pilot cells receiving secondarily treated wastewater, cells containing expanded shale retained a greater proportion of the incoming P (50.8 percent) than cells containing masonry sand (14.5 percent). After a year of operation, samples were analyzed for total P (TP) and total inorganic P (TIP). Subsamples were fractionated into labile-P, Fe+Al-bound P, humic-P, Ca+Mg-bound P, and residual-P. Means and standard deviations of TP retained by the expanded shale and masonry sand were 349 + 169 and 11.9 …
Date: August 2002
Creator: Forbes, Margaret G.
System: The UNT Digital Library
Use of geographic information systems for assessing ground water pollution potential by pesticides in central Thailand (open access)

Use of geographic information systems for assessing ground water pollution potential by pesticides in central Thailand

This study employed geographic information systems (GIS) technology to evaluate the vulnerability of groundwater to pesticide pollution. The study area included three provinces (namely, Kanchana Buri, Ratcha Buri, and Suphan Buri) located in the western part of central Thailand. Factors used for this purpose were soil texture, percent slope, primary land use, well depth, and monthly variance of rainfall. These factors were reclassified to a common scale showing potential to cause groundwater contamination by pesticides. This scale ranged from 5 to 1 which means high to low pollution potential. Also, each factor was assigned a weight indicating its influence on the movement of pesticides to groundwater. Well depth, the most important factor in this study, had the highest weight of 0.60 while each of the remaining factors had an equal weight of 0.10. These factors were superimposed by a method called “arithmetic overlay” to yield a composite vulnerability map of the study area. Maps showing relative vulnerability of groundwater to contamination by pesticides were produced. Each of them represented the degree of susceptibility of groundwater to be polluted by the following pesticides: 2,4-D, atrazine, carbofuran, dicofol, endosulfan, dieldrin & aldrin, endrin, heptachlor & heptachlor epoxide, total BHC, and total DDT. …
Date: August 2002
Creator: Thapinta, Anat
System: The UNT Digital Library
Water Quality Aspects of an Intermittent Stream and Backwaters in an Urban North Texas Watershed (open access)

Water Quality Aspects of an Intermittent Stream and Backwaters in an Urban North Texas Watershed

Pecan Creek flows southeast through the City of Denton, Texas. Characterized as an urban watershed, the basin covers approximately 63.5 km2. Pecan Creek is an intermittent stream that receives nonpoint runoff from urban landuses, and the City of Denton's wastewater treatment plant, Pecan Creek Water Reclamation Plant, discharges effluent to the stream. Downstream from the City of Denton and the wastewater treatment plant, Pecan Creek flows about 6,000 m through agricultural, pasture, and forested landscapes into Copas Cove of Lake Lewisville, creating backwater conditions. Pecan Creek water quality and chemistry were monitored from August 1997 to October 2001. Water quality was influenced by seasonal, spatial, climatic, and diurnal dynamics. Wastewater effluent discharged from the Pecan Creek Water Reclamation Plant had the greatest influence on water quality of the stream and backwaters. Water quality monitoring of Pecan Creek demonstrated that dissolved oxygen standards for the protection of aquatic life were being achieved. Water quality modeling of Pecan Creek was completed to assess future increases in effluent flow from the Pecan Creek Water Reclamation Plant. Water quality modeling indicated that dissolved oxygen standards would not be achieved at the future effluent flow of 21 MGD and at NPDES permitted loadings. Model results …
Date: August 2002
Creator: Taylor, Ritchie Don
System: The UNT Digital Library
Managing Cattail (Typha latifolia) Growth in Wetland Systems (open access)

Managing Cattail (Typha latifolia) Growth in Wetland Systems

Nutrient availability, water depth, competition, and soil management effects on cattail (Typha latifolia) growth in wetland systems were examined. Soluble reactive phosphorous (SRP), nitrate-nitrogen (NO3-N), and ammonia-nitrogen (NH3-N) removals were tested at a constructed wetland receiving municipal wastewater effluent. Over all, no significant differences in nutrients occurred between diverse planted and cattail areas. T. latifolia seeds, under the canopy of Eleochoris macrostachya, had low seed germination. Established stands of emergent vegetation can prevent cattail colonization and spread. Germination of T. latifolia at various water depths was tested, and depth impacts on cattail seedling growth and survival were ascertained using various moist soil management techniques in three ponds. Water levels at 0cm and >40cm can adversely impact cattail establishment.
Date: August 2002
Creator: Sharp, Jessica Little
System: The UNT Digital Library
Recovery of the Fish Population of a Municipal Wastewater Dominated, North Texas Creek After a Major Chlorine Disturbance (open access)

Recovery of the Fish Population of a Municipal Wastewater Dominated, North Texas Creek After a Major Chlorine Disturbance

This study evaluated the effects of a major chlorine disturbance on fish communities in Pecan creek by the City of Denton's Pecan Creek Water Reclamation Plant. Fish communities in Pecan Creek were sampled using a depletion methodology during February, April, July, and November, 1999. February and April sampling events showed that the fish communities were severely impacted by the chlorine. Sampling during July and November showed fish communities recovered in Pecan Creek. The first-twenty minutes of shocking and seining data were analyzed to mirror an equal effort methodology. This methodology was compared to the depletion methodology to see if the equal effort methodology could adequately monitor the recovery of Pecan Creek after the chlorine disturbance. It was determined that the equal effort methodology was capable of monitoring the recovery of Pecan Creek, but could not accurately represent the fisheries community as well as the depletion method. These data using the twenty-minute study were compared to a previous study. Results of this study were similar to those found in a previous study, although fish communities were more severely impacted and took longer to recover.
Date: August 2002
Creator: Maschmann, Gerald F.
System: The UNT Digital Library