Degree Level

Comparative biochemistry and genetic analysis of nucleoside hydrolase in  Escherichia coli,  Pseudomonas aeruginosa, and  Pseudomonas fluorescens. (open access)

Comparative biochemistry and genetic analysis of nucleoside hydrolase in Escherichia coli, Pseudomonas aeruginosa, and Pseudomonas fluorescens.

The pyrimidine salvage enzyme, nucleoside hydrolase, is catalyzes the irreversible hydrolysis of nucleosides into the free nucleic acid base and D-ribose. Nucleoside hydrolases have varying degrees of specificity towards purine and pyrimidine nucleosides. In E. coli, three genes were found that encode homologues of several known nucleoside hydrolases in protozoa. All three genes (designated yaaF, yeiK, and ybeK) were amplified by PCR and cloned. Two of the gene products (yeiK and ybeK) encode pyrimidine-specific nucleoside hydrolases, while the third (yaaF) encodes a nonspecific nucleoside hydrolase. All three were expressed at low levels and had different modes of regulation. As a comparative analysis, the homologous genes of Pseudomonas aeruginosa and P. fluorescens (designated nuh) were cloned. Both were determined to encode nonspecific nucleoside hydrolases. The nucleoside hydrolases of the pseudomonads exhibited markedly different modes of regulation. Both have unique promoter structures and genetic organization. Furthermore, both pseudomonad nucleoside hydrolase were found to contain an N-terminal extension of 30-35 amino acids that is shown to act as a periplasmic-signaling sequence. These are the first two nucleoside hydrolases, to date,that have been conclusively demonstrated to be exported to the periplasmic space. The physiological relevance of this is explained.
Date: December 2002
Creator: Fields, Christopher J.
System: The UNT Digital Library

Development, Validation, and Evaluation of a Continuous, Real-time, Bivalve Biomonitoring System

Access: Use of this item is restricted to the UNT Community
A biological monitoring tool to assess water quality using bivalve gape behavior was developed and demonstrated. The purpose of this work was to develop methodologies for screening water quality appropriate to the goals of the watershed paradigm. A model of bivalve gape behavior based on prediction of behavior using autoregressive techniques was the foundation of the bivalve biomonitoring system. Current technology was used in developing the system to provide bivalve gape state data in a continuous real-time manner. A laboratory version of the system, including data collection and analysis hardware and software, was developed for use as a toxicological assay for determination of effective concentrations of toxicant(s) or other types of stress on bivalve gape behavior. Corbicula fluminea was monitored and challenged with copper, zinc, and chlorpyrifos using the system. Effective concentrations of 176±23µg/L copper, 768±412µg/L zinc, and 68µg/L chlorpyrifos were observed using a natural water with high dissolved organic carbon concentrations. A rugged field version of the bivalve biomonitoring system was developed and deployed in two locations. The field systems were fitted with a photovoltaic array, a single board computer, and a CDPD telemetry modem for robust remote operation. Data were telemetered at a time relevant rate of once …
Date: December 2002
Creator: Allen, H. Joel
System: The UNT Digital Library
Investigation of Lead Hydrolytic Polymerization and Interactions with Organic Ligands in the Soil/Sediment-Water Environment (open access)

Investigation of Lead Hydrolytic Polymerization and Interactions with Organic Ligands in the Soil/Sediment-Water Environment

The objective of this research was to investigate lead speciation in the soil/sediment-water environment and to better understand how the species affect lead mobility under different environmental conditions. The research involved both field soil and sediment samples as well as standard lead solutions. Field samples were fully characterized and extracted by aqueous and organic solvents. The results were compared and evaluated with the metal speciation model, MINTEQA2. Hydrolytic polymerization and organic complexation studies were conducted with standard lead solutions under controlled experimental conditions. Results of the field samples showed that pH, dissolved cations, ionic strength, dissolved organic matter, and nature of the soil/sediment matrix play major roles in the distribution and mobility of lead (Pb) from contaminated sites. In the aqueous equilibration experiment, the magnitude of Pb2+ solubilization was in the order of pH4>pH7>pH9. The results were in good agreement with MINTEQA2 predictions. An important finding of the research is the detection of Pb polymerization species under controlled experimental conditions. At pH 5.22, Pb polymeric species were formed at rate of 0.03 per day. The role of Pb complexation with organic matter was evaluated in both field and standard samples. Different methodologies showed three types of organically bound Pb. A …
Date: December 2002
Creator: Sanmanee, Natdhera
System: The UNT Digital Library

Removal of selected water disinfection byproducts, and MTBE in batch and continuous flow systems using alternative sorbents.

Access: Use of this item is restricted to the UNT Community
A study was conducted to evaluate the sorption characteristics of six disinfection byproducts (DBPs) on four sorbents. To investigate sorption of volatile organic compounds (VOCs), specially designed experimental batch and continuous flow modules were developed. The investigated compounds included: chloroform, 1,2-dichloroethane (DCE), trichloroethylene (TCE), bromodichloromethane (BDCM), methyl tertiary butyl ether (MTBE), bromate and bromide ions. Sorbents used included light weight aggregate (LWA), an inorganic porous material with unique surface characteristics, Amberlite® XAD-16, a weakly basic anion exchange resin, Amberjet®, a strongly basic anion exchange resin, and granular activated carbon (GAC). Batch experiments were conducted on spiked Milli-Q® and lake water matrices. Results indicate considerable sorption of TCE (68.9%), slight sorption of bromate ions (19%) and no appreciable sorption for the other test compounds on LWA. The sorption of TCE increased to 75.3% in experiments utilizing smaller LWA particle size. LWA could be a viable medium for removal of TCE from contaminated surface or groundwater sites. Amberlite® was found unsuitable for use due to its physical characteristics, and its inability to efficiently remove any of the test compounds. Amberjet® showed an excellent ability to remove the inorganic anions (>99%), and BDCM (96.9%) from aqueous solutions but with considerable elevation of pH. …
Date: December 2002
Creator: Kadry, Ahmed Y.
System: The UNT Digital Library