Resource Type

291 Matching Results

Results open in a new window/tab.

Toxic Substances From Coal Combustion--a Comprehensive Assessment, Phase Ii: Element Modes of Occurrence for the Ohio 5/6/7, Wyodak and North Dakota Coal Samples (open access)

Toxic Substances From Coal Combustion--a Comprehensive Assessment, Phase Ii: Element Modes of Occurrence for the Ohio 5/6/7, Wyodak and North Dakota Coal Samples

This study reports on the second phase (Phase II) of USGS research activities in support of DOE contract DE-AC22-95PC95101 ''Toxic Substances From Coal Combustion--A Comprehensive Assessment'', funded under DOE Interagency Agreement DE-AI22-95PC95145. The purpose of the study was to provide a quantitative and semi-quantitative characterization of the modes of occurrence of trace elements in coal samples investigated under Phase II, including (1) Ohio 5/6/7, an Ohio bituminous coal sample blended from the No.5, No.6, and No.7 beds; (2) North Dakota, a lignite sample from the Falkirk Mine, Underwood, ND, and (3) Wyodak, a sub-bituminous coal sample from the Cordero Mine, Gillette, WY. Samples from these coal beds were selected for their range in rank and commercial applicability. Results of this research provide basic information on the distribution of elements in Phase II coal samples, information needed for development of a commercial predictive model for trace-element behavior during coal combustion.
Date: May 30, 2002
Creator: Kolker, Allan; Mroczkowski, Stanley J.; Palmer, Curtis A.; Dennen, Kristen O.; Finkelman, Robert B. & Jr., John H. Bullock
System: The UNT Digital Library
LASER STABILIZATION FOR NEAR ZERO NO{sub x} GAS TURBINE COMBUSTION SYSTEMS (open access)

LASER STABILIZATION FOR NEAR ZERO NO{sub x} GAS TURBINE COMBUSTION SYSTEMS

Historically, the development of new industrial gas turbines has been primarily driven by the intent to achieve higher efficiency, lower operating costs and lower emissions. Higher efficiency and lower cost is obtained through higher turbine operating temperatures, while reduction in emissions is obtained by extending the lean operating limit of the combustor. However reduction in the lean stability limit of operation is limited greatly by the chemistry of the combustion process and by the occurrence of thermo-acoustic instabilities. Solar Turbines, CFD Research Corporation, and Los Alamos National Laboratory have teamed to advance the technology associated with laser-assisted ignition and flame stabilization, to a level where it could be incorporated onto a gas turbine combustor. The system being developed is expected to enhance the lean stability limit of the swirl stabilized combustion process and assist in reducing combustion oscillations. Such a system has the potential to allow operation at the ultra-lean conditions needed to achieve NO{sub x} emissions below 5 ppm without the need of exhaust treatment or catalytic technologies. The research effort was focused on analytically modeling laser-assisted flame stabilization using advanced CFD techniques, and experimentally demonstrating the technology, using a solid-state laser and low-cost durable optics. A pulsed laser …
Date: September 30, 2002
Creator: Khanna, Vivek
System: The UNT Digital Library
Advanced Cuttings Transport Study Quarterly Technical Report: October-December 2001 (open access)

Advanced Cuttings Transport Study Quarterly Technical Report: October-December 2001

This is the second quarterly progress report for Year 3 of the ACTS project. It includes a review of progress made in: (1) Flow Loop development and (2) research tasks during the period of time between Oct 1, 2001 and Dec. 31, 2001. This report presents a review of progress on the following specific tasks: (a) Design and development of an Advanced Cuttings Transport Facility (Task 3: Addition of a Cuttings Injection/Collection System), (b) Research project (Task 6): ''Study of Cuttings Transport with Foam Under LPAT Conditions (Joint Project with TUDRP)'', (c) Research project (Task 9): ''Study of Foam Flow Behavior Under EPET Conditions'', (d) Research project (Task 10): ''Study of Cuttings Transport with Aerated Mud Under Elevated Pressure and Temperature Conditions'', (e) Research on instrumentation tasks to measure: Cuttings concentration and distribution in a flowing slurry (Task 11), and Foam properties while transporting cuttings. (Task 12), (f) Development of a Safety program for the ACTS Flow Loop. Progress on a comprehensive safety review of all flow-loop components and operational procedures. (Task 1S). (g) Activities towards technology transfer and developing contacts with Petroleum and service company members, and increasing the number of JIP members.
Date: January 30, 2002
Creator: Reed, Troy; Miska, Stefan; Takach, Nicholas; Ashenayi, Kaveh; Kane, Gerald; Pickell, Mark et al.
System: The UNT Digital Library
''Green'' Biopolymers for Improved Decontamination of Metals from Surfaces: Sorptive Characterization and Coating Properties (open access)

''Green'' Biopolymers for Improved Decontamination of Metals from Surfaces: Sorptive Characterization and Coating Properties

The proposed research aimed to develop a fundamental understanding of important biological and physical chemical parameters for effective decontamination of metal surfaces using environmentally benign aqueous-based biopolymer solutions. Understanding how heavy metal-chelating biopolymers coat and interact with contaminated surfaces will benefit the development of novel, safe, easy-to-apply decontamination methodologies for removal of radionuclides and heavy metals. The benefits of these methodologies include the following: decreased exposure hazards for workers; decreased secondary waste generation; increased efficiency of decontamination; positive public appeal and development of novel, nature-friendly business opportunities; and lower cost of cleanup to the government. We proposed to use aqueous biopolymer solutions to coat a contaminated metal surface (i.e., steel), solubilize the heavy metals (e.g., uranium) from the surface, and bind the heavy metals into the biopolymer. The biopolymer coating (containing the immobilized hazardous metal contaminants) was to be removed as a viscous film, as a dry powder, or by washing. This ''apply, wait, and remove'' procedure will reduce the amount of worker time spent in decontamination activities.
Date: April 30, 2002
Creator: Davison, Brian H.
System: The UNT Digital Library
Analysis of Gene Targeting & Nonhomologous End-joining. Final Report (open access)

Analysis of Gene Targeting & Nonhomologous End-joining. Final Report

Overall, we identified a number of new proteins that participate in nonhomologous end-joining and also in telomere addition to the ends of broken chromosomes. We showed that NHEJ is severely reduced in cells expressing both yeast mating-type genes and then went on to identify the NEJ1 gene that was under this control. We showed the epistasis relations among a set of mutations that impair telomere addition and we showed that there are in fact two pathways to repair broken chromosomes in the absence of telomerase. We characterized the DNA damage checkpoint pathway in response to a single broken chromosome and characterized especially the adaptation of cells arrested by an unrepaired DSB. We demonstrated that the DNA damage response is nuclear-limited. We showed adaptation defects for Tid1and Srs2 proteins and showed that Srs2 was also recovery-defective, even when DNA was repaired.
Date: November 30, 2002
Creator: Haber, J. E.
System: The UNT Digital Library
A New Generation Chemical Flooding Simulator (open access)

A New Generation Chemical Flooding Simulator

The premise of this research is that a general-purpose reservoir simulator for several improved oil recovery processes can and should be developed so that high-resolution simulations of a variety of very large and difficult problems can be achieved using state-of-the-art computing and computers. Such a simulator is not currently available to the industry. The goal of this proposed research is to develop a new-generation chemical flooding simulator that is capable of efficiently and accurately simulating oil reservoirs with at least a million gridblocks in less than one day on massively parallel computers. Task 1 is the formulation and development of solution scheme, Task 2 is the implementation of the chemical module, and Task 3 is validation and application.
Date: September 30, 2002
Creator: Pope, Gary A.; Sepehrnoori, Kamy & Delshad, Mojdeh
System: The UNT Digital Library
QUANTITATIVE METHODS FOR RESERVOIR CHARACTERIZATION AND IMPROVED RECOVERY: APPLICATION TO HEAVY OIL SANDS (open access)

QUANTITATIVE METHODS FOR RESERVOIR CHARACTERIZATION AND IMPROVED RECOVERY: APPLICATION TO HEAVY OIL SANDS

Improved prediction of interwell reservoir heterogeneity has the potential to increase productivity and to reduce recovery cost for California's heavy oil sands, which contain approximately 2.3 billion barrels of remaining reserves in the Temblor Formation and in other formations of the San Joaquin Valley. This investigation involves application of advanced analytical property-distribution methods conditioned to continuous outcrop control for improved reservoir characterization and simulation, particularly in heavy oil sands. The investigation was performed in collaboration with Chevron Production Company U.S.A. as an industrial partner, and incorporates data from the Temblor Formation in Chevron's West Coalinga Field. Observations of lateral variability and vertical sequences observed in Temblor Formation outcrops has led to a better understanding of reservoir geology in West Coalinga Field. Based on the characteristics of stratigraphic bounding surfaces in the outcrops, these surfaces were identified in the subsurface using cores and logs. The bounding surfaces were mapped and then used as reference horizons in the reservoir modeling. Facies groups and facies tracts were recognized from outcrops and cores of the Temblor Formation and were applied to defining the stratigraphic framework and facies architecture for building 3D geological models. The following facies tracts were recognized: incised valley, estuarine, tide- to …
Date: October 30, 2002
Creator: Castle, James W.; Molz, Fred J.; Falta, Ronald W.; Dinwiddie, Cynthia L.; Brame, Scott E. & Bridges, Robert A.
System: The UNT Digital Library
IMPACT OF CAPILLARY AND BOND NUMBERS ON RELATIVE PERMEABILITY (open access)

IMPACT OF CAPILLARY AND BOND NUMBERS ON RELATIVE PERMEABILITY

Recovery and recovery rate of oil, gas and condensates depend crucially on their relative permeability. Relative permeability in turn depends on the pore structure, wettability and flooding conditions, which can be represented by a set of dimensionless groups including capillary and bond numbers. The effect of flooding conditions on drainage relative permeabilities is not well understood and is the overall goal of this project. This project has three specific objectives: to improve the centrifuge relative permeability method, to measure capillary and bond number effects experimentally, and to develop a pore network model for multiphase flows. A centrifuge has been built that can accommodate high pressure core holders and x-ray saturation monitoring. The centrifuge core holders can operate at a pore pressure of 6.9 MPa (1000 psi) and an overburden pressure of 17 MPa (2500 psi). The effect of capillary number on residual saturation and relative permeability in drainage flow has been measured. A pore network model has been developed to study the effect of capillary numbers and viscosity ratio on drainage relative permeability. Capillary and Reynolds number dependence of gas-condensate flow has been studied during well testing. A method has been developed to estimate relative permeability parameters from gas-condensate well …
Date: September 30, 2002
Creator: Mohanty, Kishore K.
System: The UNT Digital Library
Physics Survey Overview (open access)

Physics Survey Overview

An overview of a series of assignments of the branches of physics carried out by the Board on Physics and Astronomy of the National Research Council. It identifies further theories in physics and makes recommendations on preventive priorities. The Board on Physics and Astronomy (BPA) has conducted a new decadal survey of physics entitled ''Physics in a New Era''. The survey includes assessments of the main branches of physics as well as certain selected emerging areas. The various elements of the survey were prepared by separately-appointed National Research Council (NRC) committees. The BPA formed the Physics Survey Overview Committee (PSOVC) to complete the survey by preparing an overview of the field of physics to summarize and synthesize the results of the various assessments and to address cross-cutting issues that concern physics as a whole.
Date: December 30, 2002
Creator: unknown
System: The UNT Digital Library
On-Line Texture Diagnostics for Coated Conductor Manufacture. Final Report (open access)

On-Line Texture Diagnostics for Coated Conductor Manufacture. Final Report

This Phase I project was undertaken to assess the feasibility of implementing a particular diagnostic method for characterizing the crystallographic texture of high temperature superconductor (HTS) coated conductors on-line during their reel-to-reel continuous manufacture. Key factors in this technique were the use of an area detector to greatly reduce scan time, an x-ray mirror to enhance incident beam brightness, and an automation scheme for diffractometer control, tape motion control, and calculation and output of texture characterizations.
Date: December 30, 2002
Creator: White, M. K.
System: The UNT Digital Library
Carbon Coated (Carbonous) Catalyst in Ebullated Bed Reactor for Production of Oxygenated Chemicals From Syngas/CO2: Final Report, 2000-2002 (open access)

Carbon Coated (Carbonous) Catalyst in Ebullated Bed Reactor for Production of Oxygenated Chemicals From Syngas/CO2: Final Report, 2000-2002

This report summarizes the work completed under DOE's Support of Advanced Fuel Research program, Contract No. DE-FG26-99FT40681. The contract period was October 2000 through September 2002. This R&D program investigated the modification of the mechanical strength of catalyst extrudates using Hydrocarbon Technologies, Inc. (HTI) carbon-coated catalyst technology so that the ebullated bed technology can be utilized to produce valuable oxygenated chemicals from syngas/CO{sub 2} efficiently and economically. Exothermic chemical reactions benefit from the temperature control and freedom from catalyst fouling provided by the ebullated bed reactor technology. The carbon-coated extrudates prepared using these procedures had sufficient attrition resistance and surface area for use in ebullated bed operation. The low cost of carbon coating makes the carbon-coated catalysts highly competitive in the market of catalyst extrudates.
Date: December 30, 2002
Creator: Zhou, Peizheng
System: The UNT Digital Library
Investigations of Low Temperature Time Dependent Cracking (open access)

Investigations of Low Temperature Time Dependent Cracking

The objective of this project was to investigate metallurgical and mechanical phenomena associated with time dependent cracking of cold bent carbon steel piping at temperatures between 327 C and 360 C. Boiler piping failures have demonstrated that understanding the fundamental metallurgical and mechanical parameters controlling these failures is insufficient to eliminate it from the field. The results of the project consisted of the development of a testing methodology to reproduce low temperature time dependent cracking in laboratory specimens. This methodology was used to evaluate the cracking resistance of candidate heats in order to identify the factors that enhance cracking sensitivity. The resultant data was integrated into current available life prediction tools.
Date: September 30, 2002
Creator: Van der Sluys, W. A.; Robitz, E. S.; Young, B. A. & Bloom, J.
System: The UNT Digital Library
INTEGRATED SYSTEM TO CONTROL PRIMARY PM 2.5 FROM ELECTRIC POWER PLANTS (open access)

INTEGRATED SYSTEM TO CONTROL PRIMARY PM 2.5 FROM ELECTRIC POWER PLANTS

The performance tests at E.C. Gaston showed how the Advanced ElectroCore field prototype performance changed as a function of the gas flow, inlet loading and the voltage applied to the central electrode in the separator. With the optimum voltage applied to the electrode, the unit achieved a maximum efficiency of 96.38 percent and a minimum outlet loading of 0.0021 grains/dscf while operating with a specific separating area (SSA) of 100 square feet per thousand acfm. The minimum outlet loading translates to about 0.00575 lb{sub m}/million Btu or less than one fifth of the current NSPS standard of 0.03 lb{sub m}/million Btu. The highest efficiency for the upstream ESP was about 99.75 percent. Together these two systems are capable of removing 99.991 percent of the particulate matter coming from the uncontrolled boiler. This efficiency is higher than the target efficiency of 99.99 percent and the outlet loading of 0.00575 lb{sub m}/million Btu is almost half of the target emission rate of 0.01 lb{sub m}/million stated in the program objectives. In terms of efficiency and outlet concentration, the tests showed that the Advanced ElectroCore can meet or exceed the program goals. The mercury capture tests were conducted using the Ontario Hydro method. …
Date: June 30, 2002
Creator: Altman, Ralph
System: The UNT Digital Library
Improving CO2 Efficiency for Recovering Oil in Heterogeneous Reservoirs (open access)

Improving CO2 Efficiency for Recovering Oil in Heterogeneous Reservoirs

A three-year contract, DOE Contract No. DE-FG26-01BC15364 ''Improving CO{sub 2} Efficiency for Recovering Oil in Heterogeneous Reservoirs,'' was started on September 28, 2001. This project examines three major areas in which CO{sub 2} flooding can be improved: fluid and matrix interactions, conformance control/sweep efficiency, and reservoir simulation for improved oil recovery. This report discusses the activity during the six-month period covering January 1, 2002 through June 30, 2002 that covers the second and third fiscal quarters of the project's first year. Paper SPE 75178, ''Cost Reduction and Injectivity Improvements for CO{sub 2} Foams for Mobility Control,'' has been presented and included in the proceedings of the SPE/DOE Thirteenth Symposium on Improved Oil Recovery, Tulsa, OK, April 13-17, 2002. During these two quarters of the project we have been working in several areas: reservoir fluid/rock interactions and their relationships to changing injectivity, producer survey on injectivity, and surfactant adsorption on quarried and reservoir core.
Date: July 30, 2002
Creator: Grigg, Reid B.
System: The UNT Digital Library
Ion Recognition Approach to Volume Reduction of Alkaline Tank Waste by Separation and Recycle of Sodium Hydroxide and Sodium Nitrate (open access)

Ion Recognition Approach to Volume Reduction of Alkaline Tank Waste by Separation and Recycle of Sodium Hydroxide and Sodium Nitrate

This research has focused on new liquid-liquid extraction chemistry applicable to separation of major sodium salts from alkaline tank waste. It was the overall goal to provide the scientific foundation upon which the feasibility of liquid-liquid extraction chemistry for bulk reduction of the volume of tank waste can be evaluated. Sodium hydroxide represented the initial test case and primary focus. It is a primary component of the waste1 and has the most value for recycle. A full explanation of the relevance of this research to USDOE Environmental Management needs will be given in the Relevance, Impact, and Technology Transfer section below. It should be noted that this effort was predicated on the need for sodium removal primarily from low-activity waste, whereas evolving needs have shifted attention to volume reduction of the high-activity waste. The results of the research to date apply to both applications, though treatment of high-activity wastes raises new questions that will be addressed in the renewal period. Toward understanding the extractive chemistry of sodium hydroxide and other sodium salts, it was the intent to identify candidate extractants and determine their applicable basic properties regarding selectivity, efficiency, speciation, and structure. A hierarchical strategy was to be employed in …
Date: March 30, 2002
Creator: Moyer, Bruce A.; Marchand, Alan P.; Bonnesen, Peter V.; Bryan, Jeffrey C. & Haverlock, Tamara J.
System: The UNT Digital Library
Exploitation and Optimization of Reservoir Performance in Hunton Formation, Oklahoma Technical Progress Report: January-September 2002 (open access)

Exploitation and Optimization of Reservoir Performance in Hunton Formation, Oklahoma Technical Progress Report: January-September 2002

The main objectives of the proposed study are as follows: (1) To understand and evaluate an unusual primary oil production mechanism which results in decreasing (retrograde) oil cut (ROC) behavior as reservoir pressure declines. (2) To improve calculations of initial oil in place so as to determine the economic feasibility of completing and producing a well. (3) To optimize the location of new wells based on understanding of geological and petrophysical properties heterogeneities. (4) To evaluate various secondary recovery techniques for oil reservoirs producing from fractured formations. (5) To enhance the productivity of producing wells by using new completion techniques. These objectives are important for optimizing field performance from West Carney Field located in Lincoln County, Oklahoma. The field, which was discovered in 1980, produces from Hunton Formation in a shallow-shelf carbonate reservoir. The early development in the field was sporadic. Many of the initial wells were abandoned due to high water production and constraints in surface facilities for disposing excess produced water. The field development began in earnest in 1995 by Altex Resources. They had recognized that production from this field was only possible if large volumes of water can be disposed. Being able to dispose large amounts of …
Date: September 30, 2002
Creator: Kelkar, Mohan
System: The UNT Digital Library
STABLE HIGH CONDUCTIVITY BILAYERED ELECTROLYTES FOR LOW TEMPERATURE SOLID OXIDE FUEL CELLS (open access)

STABLE HIGH CONDUCTIVITY BILAYERED ELECTROLYTES FOR LOW TEMPERATURE SOLID OXIDE FUEL CELLS

A bilayer electrolyte consisting of acceptor-doped ceria (on the fuel/reducing side) and cubic-stabilized bismuth oxide (on the oxidizing side) was developed. The bilayer electrolyte that was developed showed significant improvement in open-circuit potential versus a typical ceria based SOFC. Moreover, the OCP of the bilayer cells increased as the thickness of the bismuth oxide layer increased relative to the ceria layer. Thereby, verifying the bilayer concept. Although, because of the absence of a suitable cathode (a problem we are still working assiduously to solve), we were unable to obtain power density curves, our modeling work predicts a reduction in electrolyte area specific resistance of two orders of magnitude over cubic-stabilized zirconia and projects a maximum power density of 9 W/m{sup 2} at 800 C and 0.09 W/m{sup 2} at 500 C. Towards the development of the bilayer electrolyte other significant strides were made. Among these were, first, the development of a, bismuth oxide based, oxide ion conductor with the highest conductivity (0.56 S/cm at 800 C and 0.043 S/cm at 500 C) known to date. Second, a physical model of the defect transport mechanisms and the driving forces for the ordering phenomena in bismuth oxide and other fluorite systems was …
Date: September 30, 2002
Creator: Wachsman, Eric D. & Duncan, Keith L.
System: The UNT Digital Library
INTELLIGENT COMPUTING SYSTEM FOR RESERVOIR ANALYSIS AND RISK ASSESSMENT OF THE RED RIVER FORMATION (open access)

INTELLIGENT COMPUTING SYSTEM FOR RESERVOIR ANALYSIS AND RISK ASSESSMENT OF THE RED RIVER FORMATION

Integrated software has been written that comprises the tool kit for the Intelligent Computing System (ICS). Luff Exploration Company is applying these tools for analysis of carbonate reservoirs in the southern Williston Basin. The integrated software programs are designed to be used by small team consisting of an engineer, geologist and geophysicist. The software tools are flexible and robust, allowing application in many environments for hydrocarbon reservoirs. Keystone elements of the software tools include clustering and neural-network techniques. The tools are used to transform seismic attribute data to reservoir characteristics such as storage (phi-h), probable oil-water contacts, structural depths and structural growth history. When these reservoir characteristics are combined with neural network or fuzzy logic solvers, they can provide a more complete description of the reservoir. This leads to better estimates of hydrocarbons in place, areal limits and potential for infill or step-out drilling. These tools were developed and tested using seismic, geologic and well data from the Red River Play in Bowman County, North Dakota and Harding County, South Dakota. The geologic setting for the Red River Formation is shallow-shelf carbonate at a depth from 8000 to 10,000 ft.
Date: June 30, 2002
Creator: Luff, Kenneth D.
System: The UNT Digital Library
C1 CHEMISTRY FOR THE PRODUCTION OF CLEAN LIQUID TRANSPORTATION FUELS AND HYDROGEN (open access)

C1 CHEMISTRY FOR THE PRODUCTION OF CLEAN LIQUID TRANSPORTATION FUELS AND HYDROGEN

Faculty and students from five universities--the University of Kentucky, University of Pittsburgh, University of Utah, West Virginia University, and Auburn University--are collaborating in a research program to develop C1 chemistry processes to produce ultra-clean liquid transportation fuels and hydrogen, the zero-emissions transportation fuel of the future. The feedstocks contain one carbon atom per molecular unit. They include synthesis gas (syngas), a mixture of carbon monoxide and hydrogen produced by coal gasification or reforming of natural gas, methane, methanol, carbon dioxide, and carbon monoxide. An important objective is to develop C1 technology for the production of transportation fuel from domestically plentiful resources such as coal, coalbed methane, and natural gas. An Industrial Advisory Board with representatives from Chevron-Texaco, Eastman Chemical, Conoco-Phillips, Energy International, the Department of Defense, and Tier Associates provides guidance on the practicality of the research. The current report presents results obtained in this program in its third year, as briefly summarized below. (1) Nanoscale iron-based catalysts containing molybdenum, palladium, or nickel and supported on alumina have been developed that are very effective for the dehydrogenation of methane and ethane to produce pure hydrogen and carbon nanotubes, a potentially valuable byproduct. Some of the nanotube structures are being investigated …
Date: September 30, 2002
Creator: Huffman, Gerald P.
System: The UNT Digital Library
A STUDY OF THE EFFECTS OF POST-COMBUSTION AMMONIA INJECTION ON FLY ASH QUALITY: CHARACTERIZATION OF AMMONIA RELEASE FROM CONCRETE AND MORTARS CONTAINING FLY ASH AS A POZZOLANIC ADMIXTURE (open access)

A STUDY OF THE EFFECTS OF POST-COMBUSTION AMMONIA INJECTION ON FLY ASH QUALITY: CHARACTERIZATION OF AMMONIA RELEASE FROM CONCRETE AND MORTARS CONTAINING FLY ASH AS A POZZOLANIC ADMIXTURE

The Clean Air Act Amendments of 1990 require large reductions in emissions of NO{sub x} from coal-fired electric utility boilers. This will necessitate the use of ammonia injection, such as in selective catalytic reduction (SCR), in many power plants, resulting in the deposition of ammonia on the fly ash. The presence of ammonia could create a major barrier to fly ash utilization in concrete because of odor concerns. Although there have been limited studies of ammonia emission from concrete, little is known about the quantity of ammonia emitted during mixing and curing, and the kinetics of ammonia release. This is manifested as widely varying opinions within the concrete and ash marketing industry regarding the maximum acceptable levels of ammonia in fly ash. Therefore, practical guidelines for using ammoniated fly ash are needed in advance of the installation of many more SCR systems. The goal of this project was to develop practical guidelines for the handling and utilization of ammoniated fly ash in concrete, in order to prevent a decrease in the use of fly ash for this application. The objective was to determine the amount of ammonia that is released, over the short- and long-term, from concrete that contains ammoniated …
Date: October 30, 2002
Creator: Rathbone, Robert F. & Robl, Thomas L.
System: The UNT Digital Library
INEEL Advanced Radiotherapy Research Program Annual Report 2001 (open access)

INEEL Advanced Radiotherapy Research Program Annual Report 2001

This report summarizes the major activities and accomplishments of the Idaho National Engineering and Environmental Laboratory (INEEL) Advanced Radiotherapy Research Program for calendar year 2001. Applications of supportive research and development, as well as technology deployment in the fields of chemistry, radiation physics and dosimetry, and neutron source design and demonstration are described. Contributions in the fields of physics and biophysics include development of advanced patient treatment planning software, feasibility studies of accelerator neutron source technology for Neutron Capture Therapy (NCT), and completion of major modifications to the research reactor at Washington State University to produce an epithermal-neutron beam for NCT research applications.
Date: April 30, 2002
Creator: Venhuizen, James R.
System: The UNT Digital Library
Advanced Hydrogen Transport Membranes for Vision 21 Fossil Fuel Plants (open access)

Advanced Hydrogen Transport Membranes for Vision 21 Fossil Fuel Plants

Eltron Research Inc. and their team members are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This project was motivated by the National Energy Technology Laboratory (NETL) Vision 21 initiative which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. This objective is being pursued using dense membranes based in part on Eltron-patented ceramic materials with a demonstrated ability for proton and electron conduction. The technical goals are being addressed by modifying single-phase and composite membrane composition and microstructure to maximize proton and electron conductivity without loss of material stability. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur. During this quarter, new cermet compositions were tested that demonstrated similar performance to previous materials. A 0.5-mm thick membrane achieved at H{sub 2} transport rate of 0.2 mL/min/cm{sup 2} at 950 C, which corresponded to an ambipolar conductivity of 3 x 10{sup -3} S/cm. Although these results were equivalent to those for other cermet compositions, this new composition might be useful if …
Date: July 30, 2002
Creator: Roark, Shane E.; Sammells, Anthony F.; Mackay, Richard A.; Pitzman, Lyrik Y.; Zirbel, Thomas A.; Barton, Thomas F. et al.
System: The UNT Digital Library
FUELS IN SOIL TEST KIT: FIELD USE OF DIESEL DOG SOIL TEST KITS (open access)

FUELS IN SOIL TEST KIT: FIELD USE OF DIESEL DOG SOIL TEST KITS

Western Research Institute (WRI) has developed a new commercial product ready for technology transfer, the Diesel Dog{reg_sign} Portable Soil Test Kit, for performing analysis of fuel-contaminated soils in the field. The technology consists of a method developed by WRI (U.S. Patents 5,561,065 and 5,976,883) and hardware developed by WRI that allows the method to be performed in the field (patent pending). The method is very simple and does not require the use of highly toxic reagents. The aromatic components in a soil extract are measured by absorption at 254 nm with a field-portable photometer. WRI added significant value to the technology by taking the method through the American Society for Testing and Materials (ASTM) approval and validation processes. The method is designated as ASTM Method D 5831-96, Standard Test Method for Screening Fuels in Soils. This ASTM designation allows the method to be used for federal compliance activities. In June 2001, the Diesel Dog technology won an American Chemical Society Regional Industrial Innovations Award. To gain field experience with the new technology, Diesel Dog kits have been used for a variety of site evaluation and cleanup activities. Information gained from these activities has led to improvements in hardware configurations and …
Date: September 30, 2002
Creator: Sorini, Susan S.; Schabron, John F. & Joseph F. Rovani, Jr.
System: The UNT Digital Library
A users guide for the REBUS-PC code, version 1.4. (open access)

A users guide for the REBUS-PC code, version 1.4.

The Reduced Enrichment Research and Test Reactor (RERTR) Program uses the REBUS-PC computer code to provide reactor physics and core design information such as neutron flux distributions in space, energy, and time, and to track isotopic changes in fuel and neutron absorbers with burnup. REBUS-PC has evolved away from the original REBUS code, which was created starting in the 1960's to study large liquid metal cooled fast breeder reactors. REBUS and REBUS-PC both model the external cycle, and are very general codes with 1D, 2D, and 3D neutronics capabilities, and with complete fuel shuffling capabilities. REBUS-PC has evolved to its present status over the past decade. While it incorporates the same neutronics capabilities from DIF3D 9.0 as does REBUS 9.0 created by the RAE Division of ANL, REBUS-PC has numerous changes and enhancements directed toward the needs of the thermal reactor analyst using WINDOWS or linux-based PC's.
Date: January 30, 2002
Creator: Olson, A. P.
System: The UNT Digital Library