Fibrous Monolith Wear Resistant Components for the Mining Industry Semi-Annual Report: Number 1 (open access)

Fibrous Monolith Wear Resistant Components for the Mining Industry Semi-Annual Report: Number 1

Published mechanical and thermal properties data on a variety of materials was gathered, with focus on materials that have potential with respect to developing wear resistant and damage tolerant composite for mining industry applications. Preliminary core materials of interest include but are not limited to: Diamond, Tungsten Carbide and Cemented Tungsten Carbides, Carbides of Boron, Silicon, Titanium and Aluminum, Diboride of Titanium and Aluminum, Nitrides of Aluminum, Silicon, Titanium, and Boron, Aluminum Oxide, Tungsten, Titanium, Iron, Cobalt and Metal Alloys. Preliminary boundary materials of interest include but are not limited to: W metal, WC-Co, W-Co, WFeNi, and Mo metal and alloys. Several FM test coupons were fabricated with various compositions using the above listed materials. These coupons were consolidated to varying degrees by uniaxial hot pressing, then cut and ground to expose the FM cell structure. One promising system, WC-Co core and WFeNi boundary, was consolidated to 97% of theoretical density, and demonstrates excellent hardness. Data on standard mechanical tests was gathered, and tests will begin on the consolidated test coupons during the upcoming reporting period. The program statements of work for ACR Inc. and its subcontractors, as well as the final contract negotiations, were finalized during the current reporting …
Date: October 1, 2001
Creator: Rigali, Mark J.
System: The UNT Digital Library
Fibrous Monolith Wear Resistant Components for the Mining Industry Semi-Annual Report: Number 2 (open access)

Fibrous Monolith Wear Resistant Components for the Mining Industry Semi-Annual Report: Number 2

A set of materials property data for potential wear resistant materials was collected. These materials are designated for use as the ''core'' materials in the Fibrous Monolith structure. The material properties of hardness, toughness, thermal conductivity and cost were selected as determining factors for material choice. Data for these four properties were normalized, and weighting factors were assigned for each property to establish priority and evaluate the effects of priority fluctuation. Materials were then given a score based on the normalized parameters and weighting values. Using the initial estimates for parameter priority, the highest ranking material was tungsten carbide, with diamond as the second ranked material. Several materials were included in the trade study, and five were selected as promising ''core'' materials to include in this effort. These materials are tungsten carbide, diamond, boron carbide, titanium diboride and silicon carbide. Work was initiated on a trade study to evaluate ''shell'' materials. These materials will require the investigation of different material properties, including ultimate tensile strength, ductility, toughness, thermal expansion, thermal conductivity and compatibility during consolidation with the ''core'' materials. Kyocera Industrial Ceramics in Kyoto, Japan was visited, with the purpose of negotiating and signing the subcontract for Kyocera's participation on …
Date: August 15, 2001
Creator: Rigali, Mark J.
System: The UNT Digital Library