Degree Department

An NMR study of 2-ethyl-1-butyllithium and of 2-ethyl-1-butyllithium/lithium 2-ethyl-1-butoxide mixed aggregates (open access)

An NMR study of 2-ethyl-1-butyllithium and of 2-ethyl-1-butyllithium/lithium 2-ethyl-1-butoxide mixed aggregates

A 1H, 13C, and 6Li NMR study of 2-ethyl-1-butyllithium indicated that 2-ethyl-1-butyllithium exists only as a hexameric aggregate over the entire temperature range of 25 to - 92.1 ° C in cyclopentane. Reacting 2-ethyl-1-butyllithium with 2-ethyl-1-butanol resulted in alkyllithium/lithium alkoxide mixed aggregates, apparently of the form Ra(RO)bLia+b. A multinuclear, variable temperature NMR study of samples with O:Li ratios of 0.2 and 0.4 showed, in addition to the alkyllithium, the formation of four mixed aggregates, one of them probably an octamer. Higher O:Li ratio samples showed the formation of several other mixed aggregates. Mixing 2-ethyl-1-butyllithium with independently prepared lithium 2-ethyl-1-butoxide formed the same mixed aggregates formed by in situ synthesis of lithium alkoxide. Lithium 2-ethyl-1-butoxide also exists as aggregates in cyclopentane.
Date: May 2001
Creator: Ferreira, Aluisio V. C.
System: The UNT Digital Library
The preparation and characterization of thermo-sensitive colored hydrogel film and surfactant-free porous polystyrene three-dimensional network. (open access)

The preparation and characterization of thermo-sensitive colored hydrogel film and surfactant-free porous polystyrene three-dimensional network.

Polymer hydrogel films change their properties in response to environmental change. This remarkable phenomenon results in many potential applications of polymer hydrogel films. In this thesis colored thermo-sensitive poly(N-isopropylacrylamide) (PNIPAAm) hydrogel film was prepared by firstly synthesizing polymer latex and secondarily crosslinking the nanoparticles and casting the polymers onto glass. The shape-memory effect has been observed when changing the environmental temperature. The temperature-dependent of turbidity of polymer hydrogel film was measured by HP UVVisible spectrophotometer. This intelligent hydrogel might be used in chemomechanical systems and separation devices as well as sensors. Polymer adsorption plays an important role in many products and processes. In this thesis, surfactant-free three-dimensional polystyrene (PS) nanoparticle network has been prepared. The infrared spectroscopy and solubility experiment are performed to prove the crosslinking mechanism, also the BET method was used to measure the adsorption and desorption of polystyrene network. The BET constant (C) is calculated (C=6.32). The chemically bonded polymer nanoparticle network might have potential applications as catalyst or used for chromatographic columns.
Date: December 2001
Creator: Zhou, Bo
System: The UNT Digital Library
Synthesis and properties of novel cage-functionalized crown ethers and cryptands. (open access)

Synthesis and properties of novel cage-functionalized crown ethers and cryptands.

A novel cryptand was synthesized which contained a 3,5-disubstituted-4- oxahexacyclo[5.4.1.02,6.03,10.05,9.08,11] dodecane "cage" moiety. In alkali metal picrate extraction experiments the cryptand exhibited high avidity towards Rb+ and Cs+, when compared with the corresponding model compound. A computational study of a series of cage-functionalized cryptands and their alkali metal-complexes was performed. The X-ray crystal structure of a K+-complexed bis-cage-annulated 20-crown-6 was obtained. The associated picrate anion was found to be intimately involved in stabilization of the host-guest complex. The interaction energy between the host-guest complex and picrate anion has been calculated, and the energy thereby obtained has been corrected for basis set superposition error.
Date: August 2001
Creator: Hazlewood, Anna
System: The UNT Digital Library
Metal-Aluminum Oxide Interactions: Effects of Surface Hydroxylation and High Electric Field (open access)

Metal-Aluminum Oxide Interactions: Effects of Surface Hydroxylation and High Electric Field

Metal and oxide interactions are of broad scientific and technological interest in areas such as heterogeneous catalysis, microelectronics, composite materials, and corrosion. In the real world, such interactions are often complicated by the presence of interfacial impurities and/or high electric fields that may change the thermodynamic and kinetic behaviors of the metal/oxide interfaces. This research includes: (1) the surface hydroxylation effects on the aluminum oxide interactions with copper adlayers, and (2) effects of high electric fields on the interface of thin aluminum oxide films and Ni3Al substrate. X-ray photoelectron spectroscopy (XPS) studies and first principles calculations have been carried out to compare copper adsorption on heavily hydroxylated a- Al2O3(0001) with dehydroxylated surfaces produced by Argon ion sputtering followed by annealing in oxygen. For a heavily hydroxylated surface with OH coverage of 0.47 monolayer (ML), sputter deposition of copper at 300 K results in a maximum Cu(I) coverage of ~0.35 ML, in agreement with theoretical predictions. Maximum Cu(I) coverage at 300 K decreases with decreasing surface hydroxylation. Exposure of a partially dehydroxylated a-Al2O3(0001) surface to either air or 2 Torr water vapor results in recovery of surface hydroxylation, which in turn increases the maximum Cu(I) coverage. The ability of surface hydroxyl …
Date: December 2001
Creator: Niu, Chengyu
System: The UNT Digital Library
Substitution chemistry of the cobalt complexes RCCo3(CO)9 (R = H, CHO) with the diphosphine ligand: 4,5-bis(diphenylphosphino)-4-cyclopenten-1,3-dione (bpcd). Syntheses, X-ray structures and reactivity. (open access)

Substitution chemistry of the cobalt complexes RCCo3(CO)9 (R = H, CHO) with the diphosphine ligand: 4,5-bis(diphenylphosphino)-4-cyclopenten-1,3-dione (bpcd). Syntheses, X-ray structures and reactivity.

The reaction between the tetrahedrane cluster RCCo3(CO)9{R = CHO (1), H (3)} and the redox-active diphosphine ligand 4,5-bis(diphenylphosphino)-4-cyclopenten-1,3- dione (bpcd) leads to the replacement of two CO groups and formation of RCCo3(CO)7(bpcd) {R = CHO (2), H (4)}. Clusters 2 and 4 are thermally unstable and readily transform into the new P-C bond cleavage cluster 5. All three clusters 2, 4, and 5 have been isolated and fully characterized in solution by IR and 31P NMR spectroscopy. VT 31P NMR data indicate that the bpcd ligand in RCCo3(CO)7(bpcd) is fluxional at 187 K in THF. Clusters 2, 4, and 5 have been structurally characterized by X-ray diffraction analyses.
Date: December 2001
Creator: Liu, Jie
System: The UNT Digital Library
NMR study of 2-ethylhexyllithium aggregate and 2- ethylhexyllithium/lithium 2-ethyl-1-hexoxide mixed aggregates. (open access)

NMR study of 2-ethylhexyllithium aggregate and 2- ethylhexyllithium/lithium 2-ethyl-1-hexoxide mixed aggregates.

A 1H, 13C, and 6Li NMR study of 2-ethylhexyllithium showed that 2- ethylhexyllithium exists solely as a hexamer in cyclopentane solution over the temperature range from 25 to -65 °C. Furthermore, 2-ethylhexyllithium and lithium 2- ethyl-1-hexoxide were shown to form mixed aggregates when the alkoxide was formed in situ by reacting 2-ethylhexyllithium with 2-ethyl-1-hexanol. A multinuclear, variable temperature NMR study of a sample with an O:Li ratio of 0.2 led to the identification of at least four such aggregates, one of which was found to be a hexamer with the composition R5(RO)Li6. Studies of samples with higher O:Li ratios, up to 0.8, showed additional mixed aggregates present. All solutions containing mixed aggregates were also shown to contain hydrocarbon soluble lithium hydride. A study of lithium 2-ethyl-1- hexoxide indicated that it aggregates in solution as well.
Date: December 2001
Creator: Petros, Robby A.
System: The UNT Digital Library
Thermochemical Study of Crystalline Solutes Dissolved in Ternary Hydrogen-Bonding Solvent Mixtures (open access)

Thermochemical Study of Crystalline Solutes Dissolved in Ternary Hydrogen-Bonding Solvent Mixtures

The purpose of this dissertation is to investigate the thermochemical properties of nonelectrolyte solutes dissolved in ternary solvent mixtures, and to develop mathematical expressions for predicting and describing behavior in the solvent mixtures. Forty-five ternary solvent systems were studied containing an ether (Methyl tert-butyl ether, Dibutyl ether, or 1,4-Dioxane), an alcohol (1-Propanol, 2-Propanol, 1-Butanol, 2-Butanol, or 2-Methyl-1-propanol), and an alkane (Cyclohexane, Heptane, or 2,2,4-Trimethylpentane) cosolvents. The Combined NIBS (Nearly Ideal Binary Solvent)/Redlich-Kister equation was used to assess the experimental data. The average percent deviation between predicted and observed values was less than ± 2 per cent error, documenting that this model provides a fairly accurate description of the observed solubility behavior. In addition, Mobile Order theory, the Kretschmer-Wiebe model, and the Mecke-Kempter model were extended to ternary solvent mixtures containing an alcohol (or an alkoxyalcohol) and alkane cosolvents. Expressions derived from Mobile Order theory predicted the experimental mole fraction solubility of anthracene in ternary alcohol + alkane + alkane mixtures to within ± 5.8%, in ternary alcohol + alcohol + alkane mixtures to within ± 4.0%, and in ternary alcohol + alcohol + alcohol mixtures to within ± 3.6%. In comparison, expressions derived from the Kretschmer-Wiebe model and the Mecke-Kempter …
Date: May 2001
Creator: Pribyla, Karen J.
System: The UNT Digital Library