Search for the Higgs Boson and Technicolor Particles in p anti-p Colisions at sqrt(s) = 1.8 TeV (open access)

Search for the Higgs Boson and Technicolor Particles in p anti-p Colisions at sqrt(s) = 1.8 TeV

In the Standard Model (SM) of the elementary particles, the interactions among the known fundamental fermions (leptons and quarks) are mediated through gauge bosons which obey the symmetry: SU(3) {circle_times} SU(2) {circle_times} U(1). More precisely, the electroweak interaction [4-6] is described by a gauge symmetry SU(2) {circle_times} U(1) which is broken spontaneously. The electroweak symmetry breaking is implemented by the introduction of a complex scalar Higgs field which has a non-zero vacuum expectation value (vev). This way, the lagrangian of the theory remains invariant under SU(2) transformations, but quantization of the fields must start from a ground state which does not exhibit this symmetry, and therefore the full symmetry of the lagrangian is not manifest. Invariance of the theory under local SU(2) transformations implies the presence of vectorial gauge fields which mediate the electroweak interactions. The so called spontaneous symmetry breaking allows the quanta of these gauge fields, the W and Z bosons, to acquire a finite mass. The photon, the particle which mediates the electromagnetic interaction, remains massless. The Higgs boson is one of only two particles in the SM which have not yet been directly observed (the other is the {nu}{sub {tau}}, although there is indirect evidence of …
Date: November 1, 1999
Creator: Cortabitarte, Rocio Vilar & /Cantabria U., Santander
System: The UNT Digital Library
A new sieving matrix for DNA sequencing, genotyping and mutation detection and high-throughput genotyping with a 96-capillary array system (open access)

A new sieving matrix for DNA sequencing, genotyping and mutation detection and high-throughput genotyping with a 96-capillary array system

Capillary electrophoresis has been widely accepted as a fast separation technique in DNA analysis. In this dissertation, a new sieving matrix is described for DNA analysis, especially DNA sequencing, genetic typing and mutation detection. A high-throughput 96 capillary array electrophoresis system was also demonstrated for simultaneous multiple genotyping. The authors first evaluated the influence of different capillary coatings on the performance of DNA sequencing. A bare capillary was compared with a DB-wax, an FC-coated and a polyvinylpyrrolidone dynamically coated capillary with PEO as sieving matrix. It was found that covalently-coated capillaries had no better performance than bare capillaries while PVP coating provided excellent and reproducible results. The authors also developed a new sieving Matrix for DNA separation based on commercially available poly(vinylpyrrolidone) (PVP). This sieving matrix has a very low viscosity and an excellent self-coating effect. Successful separations were achieved in uncoated capillaries. Sequencing of M13mp18 showed good resolution up to 500 bases in treated PVP solution. Temperature gradient capillary electrophoresis and PVP solution was applied to mutation detection. A heteroduplex sample and a homoduplex reference were injected during a pair of continuous runs. A temperature gradient of 10 C with a ramp of 0.7 C/min was swept throughout the …
Date: November 8, 1999
Creator: Gao, David
System: The UNT Digital Library
Studies of beam dynamics in relativistic klystron two-beam accelerators (open access)

Studies of beam dynamics in relativistic klystron two-beam accelerators

Two-beam accelerators (TBAs) based upon free-electron lasers (FELs) or relativistic klystrons (RK-TBAs) have been proposed as efficient power sources for next generation high-energy linear colliders. Studies have demonstrated the possibility of building TBAs from X-band ({approximately}8-12 GHz) through Ka band ({approximately} 30-35 GHz) frequency regions. Provided that further prototyping shows stable beam propagation with minimal current loss and production of good quality, high-power rf fields, this technology is compatible with current schemes for electron-positron colliders in the multi-TeV center-of-mass scale. A new method of simulating the beam dynamics in accelerators of this type has been developed in this dissertation. There are three main components to this simulation. The first is a tracking algorithm to generate nonlinear transfer maps for pushing noninteracting particles through the external fields. The second component is a 3D Particle-In-Cell (PIC) algorithm that solves a set of Helmholtz equations for the self-fields, including the conducting boundary condition, and generates impulses that are interleaved with the nonlinear maps by means of a split-operation algorithm. The Helmholtz equations are solved by a multi-grid algorithm. The third component is an equivalent circuit equation solver that advances the modal rf cavity fields in time due to excitation by the modulated beam. …
Date: November 1, 1999
Creator: Lidia, Steven M.
System: The UNT Digital Library
High temperature phase equilibria studies in the Bi-Sr-Ca-Cu-O-Ag system (open access)

High temperature phase equilibria studies in the Bi-Sr-Ca-Cu-O-Ag system

A variety of experimental techniques were utilized to examine the high temperature phase equilibria in the Bi-Sr-Ca-Cu-O-Ag system. Quenching studies were used to determine the liquid solubility of Ag in the Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8} (Bi2212) melt and the details of the peritectic decomposition pathway of Bi2212 as a function on Ag content and oxygen partial pressure (PO{sub 2}). A liquid immiscibility region between oxide and Ag liquids in the 8--98 at% range was found above 900 C. Two eutectics were found in the Bi2212-Ag pseudobinary. On the oxide rich side, a eutectic exists at approximately 4 at% Ag. On the Ag rich side, a eutectic exists at approximately 98 at% Ag at a temperature of 15 C below the melting point of pure Ag. Six distinct solid phases were found to be in equilibrium with the partial melt within the Ag content and PO{sub 2} range studied. The stability of these solid phases were found to be highly sensitive to PO{sub 2}, and to a much lesser extent Ag content. High temperature x-ray diffraction (HTXRD) studies of this system are in conflict with these results. It is suggested that these discrepancies are due to experimental artifacts caused by …
Date: November 8, 1999
Creator: Margulies, Lawrence
System: The UNT Digital Library
Transport processes in directional solidification and their effects on microstructure development (open access)

Transport processes in directional solidification and their effects on microstructure development

The processing of materials with unique electronic, mechanical, optical and thermal properties plays a crucial role in modern technology. The quality of these materials depend strongly on the microstructure and the solute/dopant fields in the solid product, that are strongly influenced by the intricate coupling of heat and mass transfer and melt flow in the growth systems. An integrated research program is developed that include precisely characterized experiments and detailed physical and numerical modeling of the complex transport and dynamical processes. Direct numerical simulation of the solidification process is carried out that takes into account the unsteady thermo-solutal convection in the vertical Bridgman crystal growth system, and accurately models the thermal interaction between the furnace and the ampoule by appropriately using experimentally measured thermal profiles. The flow instabilities and transitions and the nonlinear evolution following the transitions are investigated by time series and flow pattern analysis. A range of complex dynamical behavior is predicted with increasing thermal Rayleigh number. The route to chaos appears as: steady convection {r_arrow} transient mono-periodic {r_arrow} transient bi-periodic {r_arrow} transient quasi-periodic {r_arrow} transient intermittent oscillation-relaxation {r_arrow} stable intermittent oscillation-relaxation attractor. The spatio-temporal dynamics of the melt flow is found to be directly related to the …
Date: November 8, 1999
Creator: Mazumder, Prantik
System: The UNT Digital Library
Application of spectral hole burning to the study of in vitro cellular systems (open access)

Application of spectral hole burning to the study of in vitro cellular systems

Chapter 1 of this thesis describes the various stages of tumor development and a multitude of diagnostic techniques used to detect cancer. Chapter 2 gives an overview of the aspects of hole burning spectroscopy important for its application to the study of cellular systems. Chapter 3 gives general descriptions of cellular organelles, structures, and physical properties that can serve as possible markers for the differentiation of normal and cancerous cells. Also described in Chapter 3 are the principles of cryobiology important for low temperature spectroscopy of cells, characterization of MCF-10F (normal) and MCF-7 (cancer) cells lines which will serve as model systems, and cellular characteristics of aluminum phthalocyanine tetrasulfonate (APT), which was used as the test probe. Chapters 4 and 5 are previously published papers by the author pertaining to the results obtained from the application of hole burning to the study of cellular systems. Chapter 4 presents the first results obtained by spectral hole burning of cellular systems and Chapter 5 gives results for the differentiation of MCF-10F and MCF-7 cells stained with APT by an external applied electric (Stark) field. A general conclusion is presented in Chapter 6. Appendices A and B provide additional characterization of the cell/probe …
Date: November 8, 1999
Creator: Milanovich, Nebojsa
System: The UNT Digital Library
Preliminary studies on identification of inorganic species in complex mixtures by electrospray mass spectrometry in the counter ion mode (open access)

Preliminary studies on identification of inorganic species in complex mixtures by electrospray mass spectrometry in the counter ion mode

Suppression of mass spectral peaks due to matrix problem is a major hurdle to overcome during identification work. So far, preliminary studies have been done in investigating solutions containing various percentages of nitric and hydrochloric acid. Since other anions would also be present in real samples, also needed to be examined is how the extent of suppression of metal complexes by Cl{sup {minus}} compares with suppression by other anions such as PO{sub 4}{sup 3{minus}} or SO{sub 4}{sup 2{minus}}. If suppression of other anions is as severe as that of the chloride ion, then it would be virtually impossible to analyze unknown samples containing large amount of such anions by direct infusion electrospray mass spectrometry. It seems like a separation step is needed to separate these matrix anions from the metal complexes prior to putting the solution through the electrospray. However, separation of inorganic complexes can be difficult and has not been studied thoroughly as LC separation of bioorganic compounds. Both zinc and copper chloro complexes have been observed to be more tolerant to higher amount of chloride ion present in a solution compared to the group I and II metal chloro complexes. Other transition metals including the lanthanide complexes need …
Date: November 8, 1999
Creator: Mollah, Sahana
System: The UNT Digital Library
Anisotropic magnetization and transport properties of RAgSb{sub 2} (R=Y, La-Nd, Sm, Gd-Tm) (open access)

Anisotropic magnetization and transport properties of RAgSb{sub 2} (R=Y, La-Nd, Sm, Gd-Tm)

This study of the RAgSb{sub 2} series of compounds arose as part of an investigation of rare earth intermetallic compounds containing antimony with the rare earth in a position with tetragonal point symmetry. Materials with the rare earth in a position with tetragonal point symmetry frequently manifest strong anisotropies and rich complexity in the magnetic properties, and yet are simple enough to analyze. Antimony containing intermetallic compounds commonly possess low carrier densities and have only recently been the subject of study. Large single grain crystals were grown of the RAgSb{sub 2} (R=Y, La-Nd, Sm, Gd-Tm) series of compounds out of a high temperature solution. This method of crystal growth, commonly known as flux growth is a versatile method which takes advantage of the decreasing solubility of the target compound with decreasing temperature. Overall, the results of the crystal growth were impressive with the synthesis of single crystals of LaAgSb{sub 2} approaching one gram. However, the sample yield diminishes as the rare earth elements become smaller and heavier. Consequently, no crystals could be grown with R=Yb or Lu. Furthermore, EuAgSb{sub 2} could not be synthesized, likely due to the divalency of the Eu ion. For most of the RAgSb{sub 2} compounds, …
Date: November 8, 1999
Creator: Myers, Kenneth D.
System: The UNT Digital Library
Low temperature y-ray spectrometers based on bulk superconducting and dielectric absorber crystals (open access)

Low temperature y-ray spectrometers based on bulk superconducting and dielectric absorber crystals

Many areas of research rely on the detection of radiation, in the form of single photons or particles. By measuring the photons or particles coming from an object a lot can be learned about the object under study. In some cases there is a simple need to know the number of photons coming from the source. In cases like this a simple counter, like a Geiger-Mueller survey meter, will suffice. In other cases one want to know the spectral distribution of the photons coming from the source. In cases like that a spectrometer is needed that can distinguish between photons with different energies, like a diffraction or transmission grating. The work presented in this thesis focused on the development of a new generation broad band spectrometer that has a high energy resolving power, combined with a high absorption efficiency for photon energies above 10 keV and up to 500 keV. The spectrometers we are developing are based on low-temperature sensors, like superconducting tunnel junctions or transition edge sensors, that are coupled to bulk absorber crystals. We use the low-temperature sensors because they can offer a significant improvement in energy resolving power, compared to conventional spectrometers. We couple the low-temperature sensors …
Date: November 19, 1999
Creator: Netel, H
System: The UNT Digital Library
Processing of Mo-Si-B intermetallics by extrusion and oxidation properties of the extruded Tl-MoSi{sub 2}-MoB System (open access)

Processing of Mo-Si-B intermetallics by extrusion and oxidation properties of the extruded Tl-MoSi{sub 2}-MoB System

An extrusion process was developed that is able to consistently produce large quantities of Mo-Si-B rods without the presence of defects. Binder removal from the extruded rods was studied in detail and it was determined that heating rates on the order of 0.02{degree}/minute (1.2{degree}/hour) are necessary to remove the binder without the formation of defects. This low heating rate resulted in debinding times in excess of 70 hours (approximately 3 days). Wicking was investigated as a means to decrease the time necessary for binder removal. Using 0.05{micro}m alumina powder as a wicking agent, binder removal times were reduced to 10 hours with heating rates up to 1{degree}/minute employed without defect formation. Once the extrusion process was complete the oxidation properties of the Tl-MoSi{sub 2}-MoB extruded phase assemblage was investigated. It was determined that this composition exhibits catastrophic oxidation or pesting in the temperature range of 660--760 C, resulting in the material turning to dust. Outside of this temperature range the composition is oxidatively stable. Continuous mass measurements were taken at 1,300, 1,450, and 1,600 C to determine the oxidation rate constants of this material. Parabolic rate constants of 6.9 x 10{sup {minus}3}, 1.3 x 10{sup {minus}3}, and 9.1 x 10{sup …
Date: November 8, 1999
Creator: Summers, Eric
System: The UNT Digital Library
Kinetics and mechanism of the oxidation of alkenes and silanes by hydrogen peroxide catalyzed by methylrhenium trioxide (MTO) and a novel application of electrospray mass spectrometry to study the hydrolysis of MTO (open access)

Kinetics and mechanism of the oxidation of alkenes and silanes by hydrogen peroxide catalyzed by methylrhenium trioxide (MTO) and a novel application of electrospray mass spectrometry to study the hydrolysis of MTO

Conjugated dienes were oxidized by hydrogen peroxide with methylrhenium trioxide (MTO) as catalyst. Methylrhenium bis-peroxide was the major reactive catalyst present. Hydroxyalkenes and trisubstituted silane were also tested. Mechanisms for each of these reactions are presented.
Date: November 8, 1999
Creator: Tan, Haisong
System: The UNT Digital Library
Elemental speciation in biomolecules by LC-ICP-MS with magnetic sector and collision cell instruments (open access)

Elemental speciation in biomolecules by LC-ICP-MS with magnetic sector and collision cell instruments

A methodology that can monitor and identify inorganic elements in biological and environmental systems was developed. Size exclusion chromatography (SEC) separates biomolecules, which are then nebulized by a microconcentric nebulizer. The resulting aerosol is desolved and introduced into either a high resolution ICP-MS device or a quadrupole device with a collision cell. Because of the high sensitivity and spectral resolution and high sample introduction efficiency, many unusual or difficult elements, such as Cr, Se, Cd and U, can be observed at ambient levels bound to proteins in human serum. These measurements are made in only a few minutes without preliminary isolation and preconcentration steps. Serum samples can be titrated with spikes of various elements to determine which proteins bind a given metal and oxidation state. Experiments concerning the effects of breaking disulfide linkages and denaturation on metal binding in proteins were also investigated. Elemental distribution in liver extract was also obtained.
Date: November 8, 1999
Creator: Wang, Jin
System: The UNT Digital Library
Ultrafast infrared studies of chemical reaction dynamics in room-temperature liquids (open access)

Ultrafast infrared studies of chemical reaction dynamics in room-temperature liquids

None
Date: November 1, 1999
Creator: Yang, Haw
System: The UNT Digital Library
Surface plasmon enhanced interfacial electron transfer and resonance Raman, surface-enhanced resonance Raman studies of cytochrome C mutants (open access)

Surface plasmon enhanced interfacial electron transfer and resonance Raman, surface-enhanced resonance Raman studies of cytochrome C mutants

Surface plasmon resonance was utilized to enhance the electron transfer at silver/solution interfaces. Photoelectrochemical reductions of nitrite, nitrate, and CO{sub 2} were studied on electrochemically roughened silver electrode surfaces. The dependence of the photocurrent on photon energy, applied potential and concentration of nitrite demonstrates that the photoelectrochemical reduction proceeds via photoemission process followed by the capture of hydrated electrons. The excitation of plasmon resonances in nanosized metal structures resulted in the enhancement of the photoemission process. In the case of photoelectrocatalytic reduction of CO{sub 2}, large photoelectrocatalytic effect for the reduction of CO{sub 2} was observed in the presence of surface adsorbed methylviologen, which functions as a mediator for the photoexcited electron transfer from silver metal to CO{sub 2} in solution. Photoinduced reduction of microperoxidase-11 adsorbed on roughened silver electrode was also observed and attributed to the direct photoejection of free electrons of silver metal. Surface plasmon assisted electron transfer at nanostructured silver particle surfaces was further determined by EPR method.
Date: November 8, 1999
Creator: Zheng, Junwei
System: The UNT Digital Library