Resource Type

Month

9 Matching Results

Results open in a new window/tab.

Capillary Waves at Liquid/Vapor Interfaces: A Molecular Dynamics Simulation (open access)

Capillary Waves at Liquid/Vapor Interfaces: A Molecular Dynamics Simulation

Evidence for capillary waves at a liquid/vapor interface are presented from extensive molecular dynamics simulations of a system containing up to 1.24 million Lennard-Jones particles. Careful measurements show that the total interfacial width depends logarithmically on L{sub {parallel}}, the length of the simulation cell parallel to the interface, as predicted theoretically. The strength of the divergence of the interfacial width on L{sub {parallel}} depends inversely on the surface tension {gamma}. This allows us to measure {gamma} two ways since {gamma} can also be obtained from the difference in the pressure parallel and perpendicular to the interface. These two independent measures of {gamma} agree provided that the interfacial order parameter profile is fit to an error function and not a hyperbolic tangent, as often assumed. We explore why these two common fitting functions give different results for {gamma}.
Date: July 16, 1999
Creator: Sides, Scott W.; Grest, Gary S. & Lacasse, Martin-D.
System: The UNT Digital Library
Commercial viability of hybrid vehicles : best household use and cross national considerations. (open access)

Commercial viability of hybrid vehicles : best household use and cross national considerations.

Japanese automakers have introduced hybrid passenger cars in Japan and will soon do so in the US. In this paper, we report how we used early computer simulation model results to compare the commercial viability of a hypothetical near-term (next decade) hybrid mid-size passenger car configuration under varying fuel price and driving patterns. The fuel prices and driving patterns evaluated are designed to span likely values for major OECD nations. Two types of models are used. One allows the ''design'' of a hybrid to a specified set of performance requirements and the prediction of fuel economy under a number of possible driving patterns (called driving cycles). Another provides an estimate of the incremental cost of the hybrid in comparison to a comparably performing conventional vehicle. In this paper, the models are applied to predict the NPV cost of conventional gasoline-fueled vehicles vs. parallel hybrid vehicles. The parallel hybrids are assumed to (1) be produced at high volume, (2) use nickel metal hydride battery packs, and (3) have high-strength steel bodies. The conventional vehicle also is assumed to have a high-strength steel body. The simulated vehicles are held constant in many respects, including 0-60 time, engine type, aerodynamic drag coefficient, tire …
Date: July 16, 1999
Creator: Santini, D. J. & Vyas, A. D.
System: The UNT Digital Library
Extraction of Substructural Flexibility from Global Frequencies and Mode Shapes (open access)

Extraction of Substructural Flexibility from Global Frequencies and Mode Shapes

A computational procedure for extracting substructure-by-substructure flexibility properties from global modal parameters is presented. The present procedure consists of two key features: an element-based direct flexibility method which uniquely determines the global flexibility without resorting to case-dependent redundancy selections; and, the projection of cinematically inadmissible modes that are contained in the iterated substructural matrices. The direct flexibility method is used as the basis of an inverse problem, whose goal is to determine substructural flexibilities given the global flexibility, geometrically-determined substructural rigid-body modes, and the local-to-global assembly operators. The resulting procedure, given accurate global flexibility, extracts the exact element-by-element substructural flexibilities for determinate structures. For indeterminate structures, the accuracy depends on the iteration tolerance limits. The procedure is illustrated using both simple and complex numerical examples, and appears to be effective for structural applications such as damage localization and finite element model reconciliation.
Date: July 16, 1999
Creator: Alvin, K. F. & Park, K. C.
System: The UNT Digital Library
Landmine Detection Using Backscattered X-Ray Radiography (open access)

Landmine Detection Using Backscattered X-Ray Radiography

The implementation of a backscattered x-ray landmine detection system has been demonstrated in laboratories at both Sandia National Laboratories (SNL) and the University of Florida (UF) The next step was to evaluate the modality by assembling a system for fieldwork and to evaluate the systems performance with real landmines. To assess the system's response to a variety of objects, buried simulated plastic and metal antitank landmines, surface simulated plastic antipersonnel landmines, and surface metal fragments were used as targets for the field test. The location of the test site was an unprepared field at SNL. The tests conducted using real landmines were held at UF using various burial depths. The field tests yielded the same levels of discrimination between soil and landmines that had been detected in laboratory experiments. The tests on the real landmines showed that the simulated landmines were a good approximation. The real landmines also contained internal features that would allow not only the detection of the landmines, but also the identification of them.
Date: July 16, 1999
Creator: Jacobs, J.; Lockwood, G. J.; Selph, M. M.; Shope, S. L. & Wehlburg, J. C.
System: The UNT Digital Library
The Mechanical Properties of Alumina Films Formed by Plasma Deposition and by Ion Irradiation of Sapphire (open access)

The Mechanical Properties of Alumina Films Formed by Plasma Deposition and by Ion Irradiation of Sapphire

This paper examines the correlation between mechanical properties and the density, phase, and hydrogen content of deposited alumina layers, and compares them to those of sapphire and amorphous alumina synthesized through ion-beam irradiation of sapphire. Alumina films were deposited using electron beam evaporation of aluminum and co-bombardment with O{sub 2}{sup +} ions (30-230 eV) from an electron cyclotron resonance (ECR) plasma. The H content and phase were controlled by varying the deposition temperature and the ion energy. Sapphire was amorphized at 84 K by irradiation with Al and O ions (in stoichiometric ratio) to a defect level of 4 dpa in order to form an amorphous layer 370 nm thick. Nanoindentation was performed to determine the elastic modulus, yield strength and hardness of all materials. Sapphire and amorphized sapphire have a higher density and exhibit superior mechanical properties in comparison to the deposited alumina films. Density was determined to be the primary factor affecting the mechanical properties, which showed only a weak correlation to the hydrogen content.
Date: July 16, 1999
Creator: Barbour, J.C.; Follstaedt, D.M.; Knapp, J.A.; Linam, D.L.; Mayer, T.M. & Minor, K.G.
System: The UNT Digital Library
A quasi-realtime x-ray microtomography system at the Advanced Photon Source. (open access)

A quasi-realtime x-ray microtomography system at the Advanced Photon Source.

The combination of high-brilliance x-ray sources, fast detector systems, wide-bandwidth networks, and parallel computers can substantially reduce the time required to acquire, reconstruct, and visualize high-resolution three-dimensional tomographic datasets. A quasi-realtime computed x-ray microtomography system has been implemented at the 2-BM beamline at the Advanced Photon Source at Argonne National Laboratory. With this system, a complete tomographic data set can be collected in about 15 minutes. Immediately after each projection is obtained, it is rapidly transferred to the Mathematics and Computing Sciences Division where preprocessing and reconstruction calculations are performed concurrently with the data acquisition by a SGI parallel computer. The reconstruction results, once completed, are transferred to a visualization computer that performs the volume rendering calculations. Rendered images of the reconstructed data are available for viewing back at the beamline experiment station minutes after the data acquisition was complete. The fully pipelined data acquisition and reconstruction system also gives us the option to acquire the tomographic data set in several cycles, initially with coarse then with fine angular steps. At present the projections are acquired with a straight-ray projection imaging scheme using 5-20 keV hard x rays in either phase or amplitude contrast mode at a 1-10 pm resolution. …
Date: July 16, 1999
Creator: DeCarlo, F.; Foster, I.; Insley, J.; Kesselman, C.; Lane, P.; Mancini, D. et al.
System: The UNT Digital Library
Reproducibility Data on SUMMiT (open access)

Reproducibility Data on SUMMiT

SUMMiT (Sandia Ultra-planar Multi-level MEMS Technology) at the Sandia National Laboratories' MDL (Microelectronics Development Laboratory) is a standardized MEMS (Microelectromechanical Systems) technology that allows designers to fabricate concept prototypes. This technology provides four polysilicon layers plus three sacrificial oxide layers (with the third oxide layer being planarized) to enable fabrication of complex mechanical systems-on-a-chip. Quantified reproducibility of the SUMMiT process is important for process engineers as well as designers. Summary statistics for critical MEMS technology parameters such as film thickness, line width, and sheet resistance will be reported for the SUMMiT process. Additionally, data from Van der Pauw test structures will be presented. Data on film thickness, film uniformity and critical dimensions of etched line widths are collected from both process and monitor wafers during manufacturing using film thickness metrology tools and SEM tools. A standardized diagnostic module is included in each SWiT run to obtain post-processing parametric data to monitor run-to-run reproducibility such as Van der Pauw structures for measuring sheet resistance. This characterization of the SUMMiT process enables design for manufacturability in the SUMMiT technology.
Date: July 16, 1999
Creator: Irwin, Lloyd; Jakubczak, Jay; Limary, Siv; McBrayer, John; Montague, Stephen; Smith, James et al.
System: The UNT Digital Library
The role of rare-earth dopants in nanophase zirconia catalysts for automotive emission control. (open access)

The role of rare-earth dopants in nanophase zirconia catalysts for automotive emission control.

Rare earth (RE) modification of automotive catalysts (e.g., ZrO{sub 2}) for exhaust gas treatment results in outstanding improvement of the structural stability, catalytic functions and resistance to sintering at high temperatures. Owing to the low redox potential of nonstoichiometric CeO{sub 2}, oxygen release and intake associated with the conversion between the 3+ and 4+ oxidation states of the Ce ions in Ce-doped ZrO{sub 2} provide the oxygen storage capacity that is essentially to effective catalytic functions under dynamic air-to-fuel ratio cycling. Doping tripositive RE ions such as La and Nd in ZrO{sub 2}, on the other hand, introduces oxygen vacancies that affect the electronic and ionic conductivity. These effects, in conjunction with the nanostructure and surface reactivity of the fine powders, present a challenging problem in the development of better ZrO{sub 2}-containing three-way catalysts. We have carried out in-situ small-to-wide angle neutron diffraction at high temperatures and under controlled atmospheres to study the structural phase transitions, sintering behavior, and Ce{sup 3+} {leftrightarrow} Ce{sup 4+} redox process. We found substantial effects due to RE doping on the nature of aggregation of nanoparticles, defect formation, crystal phase transformation, and metal-support interaction in ZrO{sub 2} catalysts for automotive emission control.
Date: July 16, 1999
Creator: Loong, C.-K. & Ozawa, M.
System: The UNT Digital Library
Stress corrosion cracking behavior of irradiated model austenitic stainless steel alloys. (open access)

Stress corrosion cracking behavior of irradiated model austenitic stainless steel alloys.

Slow-strain-rate tensile tests (SSRTs) and posttest fractographic analyses by scanning electron microscopy were conducted on 16 austenitic stainless steel (SS) alloys that were irradiated at 289 C in He. After irradiation to {approx}0.3 x 10{sup 21} n{center_dot}cm{sup {minus}2} and {approx}0.9 x 10{sup 21} n{center_dot}cm{sup {minus}2} (E >1 MeV), significant heat-to-heat variations in the degree of intergranular and transgranular stress corrosion cracking (IGSCC and TGSCC) were observed. Following irradiation to a fluence of {approx}0.3 x 10{sup 21} n{center_dot}cm{sup {minus}2}, a high-purity laboratory heat of Type 316L SS (Si {approx} 0.024 wt%) exhibited the highest susceptibility to IGSCC. The other 15 alloys exhibited negligible susceptibility to IGSCC at this low fluence. The percentage of TGSCC on the fracture surfaces of SSRT specimens of the 16 alloys at {approx}0.3 x 10{sup 21} n{center_dot}cm{sup {minus}2} (E > 1 MeV) could be correlated well with N and Si concentrations; all alloys that contained <0.01 wt.% N and <1.0 wt. % Si were susceptible, whereas all alloys that contained >0.01 wt.% N or >1.0 wt.% Si were relatively resistant. High concentrations of Cr were beneficial. Alloys that contain <15.5 wt.% Cr exhibited greater percentages of TGSCC and IGSCC than those alloys with {approx}18 wt.% Cr, whereas …
Date: July 16, 1999
Creator: Chung, H. M.; Karlsen, T. M.; Ruther, W. E.; Shack, W. J. & Strain, R. V.
System: The UNT Digital Library