Search for the Higgs Boson and Technicolor Particles in p anti-p Colisions at sqrt(s) = 1.8 TeV (open access)

Search for the Higgs Boson and Technicolor Particles in p anti-p Colisions at sqrt(s) = 1.8 TeV

In the Standard Model (SM) of the elementary particles, the interactions among the known fundamental fermions (leptons and quarks) are mediated through gauge bosons which obey the symmetry: SU(3) {circle_times} SU(2) {circle_times} U(1). More precisely, the electroweak interaction [4-6] is described by a gauge symmetry SU(2) {circle_times} U(1) which is broken spontaneously. The electroweak symmetry breaking is implemented by the introduction of a complex scalar Higgs field which has a non-zero vacuum expectation value (vev). This way, the lagrangian of the theory remains invariant under SU(2) transformations, but quantization of the fields must start from a ground state which does not exhibit this symmetry, and therefore the full symmetry of the lagrangian is not manifest. Invariance of the theory under local SU(2) transformations implies the presence of vectorial gauge fields which mediate the electroweak interactions. The so called spontaneous symmetry breaking allows the quanta of these gauge fields, the W and Z bosons, to acquire a finite mass. The photon, the particle which mediates the electromagnetic interaction, remains massless. The Higgs boson is one of only two particles in the SM which have not yet been directly observed (the other is the {nu}{sub {tau}}, although there is indirect evidence of …
Date: November 1, 1999
Creator: Cortabitarte, Rocio Vilar & /Cantabria U., Santander
System: The UNT Digital Library
Measurement of the deuteron elastic structure functions at large momentum transfers (open access)

Measurement of the deuteron elastic structure functions at large momentum transfers

The cross section for elastic electron-deuteron scattering has been measured using the Hall A Facility of Jefferson Laboratory. Scattered electrons and recoiling deuterons were detected in coincidence in the two 4 GeV/c High Resolution Spectrometers (HRS) of Hall A. The deuteron elastic structure functions A(Q{sup 2}) and B(Q{sup 2}) have been extracted from these data. Results for the measurement of A(Q{sup 2}) in the range of 0.7 ≤ Q{sup 2} ≤ 6.0 (GeV/c){sup 2} are reported. Results for the magnetic structure function, B(Q{sup 2}), are presented in the range of 0.7 ≤ Q{sup 2} ≤ 1.35 (GeV/c){sup 2}. The results for both structure functions are compared to predictions of meson-nucleon based models, both with and without the inclusion of meson-exchange currents. The A(Q{sup 2}) results are compared to predictions of the dimensional scaling quark model and perturbative quantum chromodynamics. The results can provide insights into the transition from meson-nucleon to quark-gluon descriptions of the nuclear two-body system.
Date: August 1, 1999
Creator: McCormick, Kathy
System: The UNT Digital Library
Study of Quasielastic 1p-shell proton Knockout in the {sup 16}O (e,e'p) reaction at Q{sup 2}=0.8 (GeV/c){sup 2} (open access)

Study of Quasielastic 1p-shell proton Knockout in the {sup 16}O (e,e'p) reaction at Q{sup 2}=0.8 (GeV/c){sup 2}

Coincidence cross sections and the structure functions R{sub L+TT},#2; R{sub T} and R{sub LT} have been obtained for the quasielastic #2;#3;{sup 16}O(#7;e,#2; e'p)#8; reaction with the proton knocked out from the #2;1p{sub 1/2}#2;#2;#4; and #2;1p{sub 3/2}#5;#2;#4; states in perpendicular kinematics. The nominal energy transfer #3;{omega} was 439#11; MeV#4; the nominal Q{sup 2}#4; was 0.8 (#7;GeV/#14;c){sup 2}#8;#4; and the kinetic energy of knocked-#15;out proton was 427#3;#16; MeV. The data was taken in Hall A#4; Je#17;erson Laboratory#4; using two high resolution spectrometers to detect electrons and protons respectively. Nominal beam energies 845#18; MeV#4;, #2;#19;1645#18; MeV#4; and #3;2445#18; MeV were employed. For each beam energy,#4; the momentum and angle of electron arm were #6;fixed,#4; while the angle between the proton momentum and the momentum transfer {vector #4;q} was varied to map out the missing momentum. R{sub LT} was separated out to ~350 MeV#14;/c in missing momentum. R{sub L+TT} and R{sub T} were separated out to #2;#3;~280 MeV/#14;c in missing momentum. R{sub L} and R{sub T} were separated at a missing momentum of #18;#3;52.5#18; MeV/#14;c for the data taken with hadron arm along #4;{vector q}. The measured cross sections and response functions agree with both relativistic and non#15;relativistic DWIA calculations employing spectroscopic factors between …
Date: June 1, 1999
Creator: Gao, Juncai
System: The UNT Digital Library
A study of the {sup 16}O (e, e'p) reaction at deep missing energies (open access)

A study of the {sup 16}O (e, e'p) reaction at deep missing energies

The {sup 16}O(e,e'p)#8; reaction was studied in the #6;first physics experiment performed at Jefferson lab Hall A. In the quasielastic region cross sections were measured for both quasi#11;parallel and perpendicular kinematics at q = 1000 MeV and #2;{omega} = 445#14;#14;#15; MeV. From the data acquired in quasi#11;parallel kinematics#4; longitudinal and transverse response functions#4; R{sub L} and R{sub T} were separated for E{sub miss} < 60 MeV. The perpendicular kinematics data were used to extract R{sub LT}, #4; R{sub T},#4; and R{sub L#16;} + V{sub TT}/V{sub L}R{sub TT} response functions for the same E{sub miss} range and for P{sub miss} < 310 MeV#18;c. The {sub 16}O(#7;e,#4;e'p)#8; cross section was measured in the dip region at q = 1026 MeV and #2; {omega} = 586#12;#15;#19;#2; MeV for 10 MeV <#3; E{sub miss} < 320 MeV. This thesis presents the results for the missing energy continuum (#7;E{sub miss}>25#4; #3;#15; MeV)#8; from this experiment.
Date: February 1, 1999
Creator: Liyanage, Nilanga
System: The UNT Digital Library
Measurement of the Electric and Magnetic Elastic Structure Functions of the Deuteron at Large Momentum Transfers (open access)

Measurement of the Electric and Magnetic Elastic Structure Functions of the Deuteron at Large Momentum Transfers

The deuteron elastic structure functions, A(Q{sup 2}) and B(Q{sup 2}), have been extracted from cross section measurements of elastic electron-deuteron scattering in coincidence using the Continuous Electron Beam Accelerator and Hall A Facilities of Jefferson Laboratory. Incident electrons were scattered off a high-power cryogenic deuterium target. Scattered electrons and recoil deuterons were detected in the two High Resolution Spectrometers of Hall A. A(Q{sup 2}) was extracted from forward angle cross section measurements in the squared four-momentum transfer range 0.684 ≤ Q{sup 2} ≤ 5.90 (GeV/c){sup 2}. B(Q{sup 2}) was determined by means of a Rosenbluth separation in the range 0.684 ≤ Q{sup 2} ≤ 1.325 (GeV/c){sup 2}. The data are compared to theoretical models based on the impulse approximation with the inclusion of meson-exchange currents and to predictions of quark dimensional scaling and perturbative quantum chromodynamics. The results are expected to provide insights into the transition from meson-nucleon to quark-gluon descriptions of the nuclear two-body system.
Date: October 1, 1999
Creator: Suleiman, Riad
System: The UNT Digital Library
Genetic algorithms and their use in Geophysical Problems (open access)

Genetic algorithms and their use in Geophysical Problems

Genetic algorithms (GAs), global optimization methods that mimic Darwinian evolution are well suited to the nonlinear inverse problems of geophysics. A standard genetic algorithm selects the best or ''fittest'' models from a ''population'' and then applies operators such as crossover and mutation in order to combine the most successful characteristics of each model and produce fitter models. More sophisticated operators have been developed, but the standard GA usually provides a robust and efficient search. Although the choice of parameter settings such as crossover and mutation rate may depend largely on the type of problem being solved, numerous results show that certain parameter settings produce optimal performance for a wide range of problems and difficulties. In particular, a low (about half of the inverse of the population size) mutation rate is crucial for optimal results, but the choice of crossover method and rate do not seem to affect performance appreciably. Optimal efficiency is usually achieved with smaller (&lt; 50) populations. Lastly, tournament selection appears to be the best choice of selection methods due to its simplicity and its autoscaling properties. However, if a proportional selection method is used such as roulette wheel selection, fitness scaling is a necessity, and a high …
Date: April 1, 1999
Creator: Parker, Paul B.
System: The UNT Digital Library
Principles and techniques for designing precision machines (open access)

Principles and techniques for designing precision machines

This thesis is written to advance the reader's knowledge of precision-engineering principles and their application to designing machines that achieve both sufficient precision and minimum cost. It provides the concepts and tools necessary for the engineer to create new precision machine designs. Four case studies demonstrate the principles and showcase approaches and solutions to specific problems that generally have wider applications. These come from projects at the Lawrence Livermore National Laboratory in which the author participated: the Large Optics Diamond Turning Machine, Accuracy Enhancement of High- Productivity Machine Tools, the National Ignition Facility, and Extreme Ultraviolet Lithography. Although broad in scope, the topics go into sufficient depth to be useful to practicing precision engineers and often fulfill more academic ambitions. The thesis begins with a chapter that presents significant principles and fundamental knowledge from the Precision Engineering literature. Following this is a chapter that presents engineering design techniques that are general and not specific to precision machines. All subsequent chapters cover specific aspects of precision machine design. The first of these is Structural Design, guidelines and analysis techniques for achieving independently stiff machine structures. The next chapter addresses dynamic stiffness by presenting several techniques for Deterministic Damping, damping designs that …
Date: February 1, 1999
Creator: Hale, L C
System: The UNT Digital Library
A Fuzzy Logic Framework for Integrating Multiple Learned Models (open access)

A Fuzzy Logic Framework for Integrating Multiple Learned Models

The Artificial Intelligence field of Integrating Multiple Learned Models (IMLM) explores ways to combine results from sets of trained programs. Aroclor Interpretation is an ill-conditioned problem in which trained programs must operate in scenarios outside their training ranges because it is intractable to train them completely. Consequently, they fail in ways related to the scenarios. We developed a general-purpose IMLM solution, the Combiner, and applied it to Aroclor Interpretation. The Combiner's first step, Scenario Identification (M), learns rules from very sparse, synthetic training data consisting of results from a suite of trained programs called Methods. S1 produces fuzzy belief weights for each scenario by approximately matching the rules. The Combiner's second step, Aroclor Presence Detection (AP), classifies each of three Aroclors as present or absent in a sample. The third step, Aroclor Quantification (AQ), produces quantitative values for the concentration of each Aroclor in a sample. AP and AQ use automatically learned empirical biases for each of the Methods in each scenario. Through fuzzy logic, AP and AQ combine scenario weights, automatically learned biases for each of the Methods in each scenario, and Methods' results to determine results for a sample.
Date: March 1, 1999
Creator: Hartog, Bobi Kai Den
System: The UNT Digital Library
A Reduced Grid Method for a Parallel Global Ocean General Circulation Model (open access)

A Reduced Grid Method for a Parallel Global Ocean General Circulation Model

A limitation of many explicit finite-difference global climate models is the timestep restriction caused by the decrease in cell size associated with the convergence of meridians near the poles. A computational grid in which the number of cells in the longitudinal direction is reduced toward high-latitudes, keeping the longitudinal width of the resulting cells as uniform as possible and increasing the allowable timestep, is applied to a three-dimensional primitive equation ocean-climate model. This ''reduced'' grid consists of subgrids which interact at interfaces along their northern and southern boundaries, where the resolution changes by a factor of three. Algorithms are developed to extend the finite difference techniques to this interface, focusing on the conservation required to perform long time integrations, while preserving the staggered spatial arrangement of variables and the numerics used on subgrids. The reduced grid eliminates the common alternative of filtering high-frequency modes from the solution at high-latitudes to allow a larger timestep and reduces execution time per model step by roughly 20 percent. The reduced grid model is implemented for parallel computer architectures with two-dimensional domain decomposition and message passing, with speedup results comparable to those of the original model. Both idealized and realistic model runs are presented …
Date: December 1, 1999
Creator: Wickett, M.E.
System: The UNT Digital Library
Genetic algorithms applied to nonlinear and complex domains (open access)

Genetic algorithms applied to nonlinear and complex domains

The dissertation, titled ''Genetic Algorithms Applied to Nonlinear and Complex Domains'', describes and then applies a new class of powerful search algorithms (GAS) to certain domains. GAS are capable of solving complex and nonlinear problems where many parameters interact to produce a ''final'' result such as the optimization of the laser pulse in the interaction of an atom with an intense laser field. GAS can very efficiently locate the global maximum by searching parameter space in problems which are unsuitable for a search using traditional methods. In particular, the dissertation contains new scientific findings in two areas. First, the dissertation examines the interaction of an ultra-intense short laser pulse with atoms. GAS are used to find the optimal frequency for stabilizing atoms in the ionization process. This leads to a new theoretical formulation, to explain what is happening during the ionization process and how the electron is responding to finite (real-life) laser pulse shapes. It is shown that the dynamics of the process can be very sensitive to the ramp of the pulse at high frequencies. The new theory which is formulated, also uses a novel concept (known as the (t,t') method) to numerically solve the time-dependent Schrodinger equation Second, …
Date: June 1, 1999
Creator: Barash, D & Woodin, A E
System: The UNT Digital Library
Direct observation of resonance effects in laser cluster interactions (open access)

Direct observation of resonance effects in laser cluster interactions

Time resolved dynamics of high intensity laser interactions with atomic clusters have been studied with both theoretical analysis and experiment. A short-pulse Ti:sapphire laser system, which could produce 50 mJ of energy in a 50 fs pulse, was built to perform these experiments. The laser used a novel single grating stretcher and was pumped, in part, by a custom Nd:YLF laser system, including 19 mm Nd:YLF amplifiers. It was found that there is an optimal pulse width to maximize absorption for a given cluster size. This optimal pulse width ranged from 400 fs for 85 A radius xenon clusters to 1.2 ps for 205 {angstrom} radius xenon clusters. Using a pump-probe configuration, the absorption of the probe radiation was observed to reach a maximum for a particular time delay between pump and probe, dependent on the cluster size. The delay for peak absorption was 800, 1400, and 2100 fs for 85 {angstrom}, 130 {angstrom}, and 170 {angstrom} radius xenon clusters respectively. Model calculations suggest that these effects are due to resonant heating of the spherical plasma in agreement with the hydrodynamic interpretation of cluster interactions. While this simple hydrodynamic code produces reasonable agreement with data, it does not include bulk …
Date: June 1, 1999
Creator: Zweiback, J
System: The UNT Digital Library
The Development and Application of Reactive Transport Modeling Techniques to Study Radionuclide Migration at Yucca Mountain, NV (open access)

The Development and Application of Reactive Transport Modeling Techniques to Study Radionuclide Migration at Yucca Mountain, NV

Yucca Mountain, Nevada has been chosen as a possible site for the first high level radioactive waste repository in the United States. As part of the site investigation studies, we need to make scientifically rigorous estimations of radionuclide migration in the event of a repository breach. Performance assessment models used to make these estimations are computationally intensive. We have developed two reactive transport modeling techniques to simulate radionuclide transport at Yucca Mountain: (1) the selective coupling approach applied to the convection-dispersion-reaction (CDR) model and (2) a reactive stream tube approach (RST). These models were designed to capture the important processes that influence radionuclide migration while being computationally efficient. The conventional method of modeling reactive transport models is to solve a coupled set of multi-dimensional partial differential equations for the relevant chemical components in the system. We have developed an iterative solution technique, denoted the selective coupling method, that represents a versatile alternative to traditional uncoupled iterative techniques and the filly coupled global implicit method. We show that selective coupling results in computational and memory savings relative to these approaches. We develop RST as an alternative to the CDR method for solving large two- or three-dimensional reactive transport simulations for cases …
Date: September 1, 1999
Creator: Viswanathan, Hari Selvi
System: The UNT Digital Library
Large eddy simulation of Rayleigh-Taylor instability using the arbitrary Lagrangian-Eulerian method (open access)

Large eddy simulation of Rayleigh-Taylor instability using the arbitrary Lagrangian-Eulerian method

This research addresses the application of a large eddy simulation (LES) to Arbitrary Lagrangian Eulerian (ALE) simulations of Rayleigh-Taylor instability. First, ALE simulations of simplified Rayleigh-Taylor instability are studied. The advantages of ALE over Eulerian simulations are shown. Next, the behavior of the LES is examined in a more complicated ALE simulation of Rayleigh-Taylor instability. The effects of eddy viscosity and stochastic backscatter are examined. The LES is also coupled with ALE to increase grid resolution in areas where it is needed. Finally, the methods studied above are applied to two sets of experimental simulations. In these simulations, ALE allows the mesh to follow expanding experimental targets, while LES can be used to mimic the effect of unresolved instability modes.
Date: December 1, 1999
Creator: Darlington, R
System: The UNT Digital Library
Stochastic Characterization of Cast Metal Microstructure (open access)

Stochastic Characterization of Cast Metal Microstructure

The major goal of this work is to provide a means to characterize the final structure of a metal that has solidified from a melt. The thermally controlled solidification of a binary alloy, nucleated at isolated sites, is described by the evolution of a probability distribution function (PDF). The relevant equation required for propagating the PDF is developed with variables for grain size and distance to nearest neighbor. The phenomena of nucleation, growth, and impingement of the grains are discussed, and used as the basis for developing rate equations that evolve the PDF. The complementary equations describing global heat and solute transfer are discussed, and coupled with the microstructure evolution equations for grain growth and PDF evolution. The full set of equations is solved numerically and results are compared with experimental data for the plutonium 1 weight percent gallium system. The three principal results of this work are: (1) The formulation of transient evolution equations for the PDF description of nucleation, growth, and impingement of a distribution of grain sizes and locations; (2) Solution of the equations to give a correlation for final average grain size as a function of material parameters, nucleation site density, and cooling rate; and (3) …
Date: June 1, 1999
Creator: Steinzig, M.
System: The UNT Digital Library
Femtosecond Photoelectron Spectroscopy: A New Tool for the Study of Anion Dynamics (open access)

Femtosecond Photoelectron Spectroscopy: A New Tool for the Study of Anion Dynamics

A new experimental technique for the time-resolved study of anion reactions is presented. Using femtosecond laser pulses, which provide extremely fast ({approx} 100 fs) time resolution, in conjunction with photoelectron spectroscopy, which reveals differences between anion and neutral potential energy surfaces, a complex anion reaction can be followed from its inception through the formation of asymptotic products. Experimental data can be modeled quantitatively using established theoretical approaches, allowing for the refinement of potential energy surfaces as well as dynamical models. After a brief overview, a detailed account of the construction of the experimental apparatus is presented. Documentation of the data acquisition program is contained in the Appendix. The first experimental demonstration of the technique is then presented for I{sub 2}{sup -} photodissociation, modeled using a simulation program which is also detailed in the Appendix. The investigation of I{sub 2}{sup -} photodissociation in several size-selected I{sub 2}{sup -}(Ar){sub n} (n = 6-20) and I{sub 2}{sup -}(CO{sub 2}){sub n} (n = 4-16) clusters forms the heart of the dissertation. In a series of chapters, the numerous effects of solvation on this fundamental bond-breaking reaction are explored, the most notable of which is the recombination of I{sub 2}{sup -} on the ground {tilde …
Date: February 1, 1999
Creator: Greenblatt, B. J.
System: The UNT Digital Library
Historical Exposures to Chemicals at the Rocky Flats Nuclear Weapons Plant: A Pilot Retrospective Exposure Assessment (open access)

Historical Exposures to Chemicals at the Rocky Flats Nuclear Weapons Plant: A Pilot Retrospective Exposure Assessment

In a mortality study of white males who had worked at the Rocky Flats Nuclear Weapons Plant between 1952 and 1979, an increased number of deaths from benign and unspecified intracranial neoplasms was found. A case-control study nested within this cohort investigated the hypothesis that an association existed between brain tumor death and exposure to either internally deposited plutonium or external ionizing radiation. There was no statistically significant association found between estimated radiation exposure from internally deposited plutonium and the development of brain tumors. Exposure by job or work area showed no significant difference between the cohort and the control groups. An update of the study found elevated risk estimates for (1) all lymphopoietic neoplasms, and (2) all causes of death in employees with body burdens greater than or equal to two nanocuries of plutonium. There was an excess of brain tumors for the entire cohort. Similar cohort studies conducted on worker populations from other plutonium handling facilities have not yet shown any elevated risks for brain tumors. Historically, the Rocky Flats Nuclear Weapons Plant used large quantities of chemicals in their production operations. The use of solvents, particularly carbon tetrachloride, was unique to Rocky Flats. No investigation of the …
Date: February 1, 1999
Creator: Robertson, Janeen Denise
System: The UNT Digital Library
Search for the B{sub c} meson in hadronic Z{sup 0} decays using the OPAL detector at LEP (open access)

Search for the B{sub c} meson in hadronic Z{sup 0} decays using the OPAL detector at LEP

A search for decays of the B{sub c} meson was performed using data collected from 1990--1995 with the OPAL detector on or near the Z{sup 0} peak at LEP. The decay channels B{sub c}{sup +} {r_arrow} J/{psi}{pi}{sup +}, B{sub c}{sup +} {r_arrow} J/{psi}a{sub 1}{sup +} and B{sub c}{sup +} {r_arrow} J/{psi}{ell}{sup +}{nu} were investigated, where {ell} denotes an electron or a muon. Two candidates are observed in the mode B{sub c}{sup +} {r_arrow} J/{psi}{pi}{sup +}, with an estimated background of (0.63 {+-} 0.20) events. The weighted mean of the masses of the two candidates is (6.32 {+-} 0.06) GeV/c{sup 2}, which is consistent with the predicted mass of the B{sub c} meson. One candidate event is observed in the mode B{sub c}{sup +} {r_arrow} J/{psi}{ell}{sup +}{nu}, with an estimated background of (0.82 {+-} 0.19) events. No candidate events are observed in the B{sub c}{sup +} {r_arrow} J/{psi}a{sub 1}{sup +} decay mode, with an estimated background of (1.10 {+-} 0.22) events. Upper bounds at the 90% confidence level are set on the production rates for these processes.
Date: January 1, 1999
Creator: Herndon, M.F.
System: The UNT Digital Library
Methods development for separation of inorganic anions, organic acids and bases, and neutral organic compounds by ion chromatography and capillary electrophoresis (open access)

Methods development for separation of inorganic anions, organic acids and bases, and neutral organic compounds by ion chromatography and capillary electrophoresis

A novel anion-exchange resin containing three amine groups was prepared by reaction of a chloromethylated polystyrene-divinylbenzene (PS-DVB) resin with diethylenetriamine. After being protonated by contact with an aqueous acid, this resin can be used for ion chromatographic separation of anions. The charge on the resins can be varied from +1 to +3 by changing the mobile phase pH. The selectivity of the new ion exchangers for various inorganic anions was quite different from that of conventional anion exchangers. The performance of this new anion exchanger was studied by changing the pH and the concentration of the eluent, and several different eluents were used with some common anions as testing analytes. Conductivity detection and UV-visible detection were applied to detect the anions after separation. The new resin can also be used for HPLC separation of neutral organic compounds. Alkylphenols and alkylbenzenes were separated with this new polymeric resin, and excellent separations were obtained under simple conditions. This report contains Chapter 1: General introduction and Chapter 6: General conclusions.
Date: April 1, 1999
Creator: Li, J.
System: The UNT Digital Library
Noble Gas Measurement and Analysis Technique for Monitoring Reprocessing Facilities (open access)

Noble Gas Measurement and Analysis Technique for Monitoring Reprocessing Facilities

An environmental monitoring technique using analysis of stable noble gas isotopic ratios on-stack at a reprocessing facility was developed. This technique integrates existing technologies to strengthen safeguards at reprocessing facilities. The isotopic ratios are measured using a mass spectrometry system and are compared to a database of calculated isotopic ratios using a Bayesian data analysis method to determine specific fuel parameters (e.g., burnup, fuel type, fuel age, etc.). These inferred parameters can be used by investigators to verify operator declarations. A user-friendly software application (named NOVA) was developed for the application of this technique. NOVA included a Visual Basic user interface coupling a Bayesian data analysis procedure to a reactor physics database (calculated using the Monteburns 3.01 code system). The integrated system (mass spectrometry, reactor modeling, and data analysis) was validated using on-stack measurements during the reprocessing of target fuel from a U.S. production reactor and gas samples from the processing of EBR-II fast breeder reactor driver fuel. These measurements led to an inferred burnup that matched the declared burnup with sufficient accuracy and consistency for most safeguards applications. The NOVA code was also tested using numerous light water reactor measurements from the literature. NOVA was capable of accurately determining …
Date: September 1, 1999
Creator: Charlton, William S
System: The UNT Digital Library
Crenulative Turbulence in a Converging Nonhomogeneous Material (open access)

Crenulative Turbulence in a Converging Nonhomogeneous Material

Crenulative turbulence is a nonlinear extension of the Bell-Plesset instability, usually observed in a converging system in which there is a nonhomogeneous response of stress to strain and/or strain rate. In general, crenelation occurs in any circumstance in which the mean flow streamlines converge the material more strongly than the compressibility can accommodate. Elements of the material slip past each other, resulting in local fluctuations in velocity from that of the mean flow, producing a type of turbulence that is more kinematic than inertial. For a homogeneous material, crenelation occurs at the atomic or molecular scale. With nonhomogeneous stress response at larger scales, the crenulative process can also occur at those larger scales. The results are manifested by a decrease in the rate of dissipation to heat, and by the configurationally-irreversible mixing of nonhomogeneities across any mean-flow-transported interface. We obtain a mathematical description of the crenulative process by means of Reynolds decomposition of the appropriate variables, and the derivation of transport equations for the second-order moments that arise in the mean-flow momentum and energy equations. The theory is illustrated by application to the spherical convergence of an incompressible fluid with nonhomogeneous distribution of kinematic viscosity.
Date: January 1, 1999
Creator: Romero, Casildo A.
System: The UNT Digital Library
Statistical analysis of liquid seepage in partially saturated heterogeneous fracture systems (open access)

Statistical analysis of liquid seepage in partially saturated heterogeneous fracture systems

Field evidence suggests that water flow in unsaturated fracture systems may occur along fast preferential flow paths. However, conventional macroscale continuum approaches generally predict the downward migration of water as a spatially uniform wetting front subjected to strong inhibition into the partially saturated rock matrix. One possible cause of this discrepancy may be the spatially random geometry of the fracture surfaces, and hence, the irregular fracture aperture. Therefore, a numerical model was developed in this study to investigate the effects of geometric features of natural rock fractures on liquid seepage and solute transport in 2-D planar fractures under isothermal, partially saturated conditions. The fractures were conceptualized as 2-D heterogeneous porous media that are characterized by their spatially correlated permeability fields. A statistical simulator, which uses a simulated annealing (SA) algorithm, was employed to generate synthetic permeability fields. Hypothesized geometric features that are expected to be relevant for seepage behavior, such as spatially correlated asperity contacts, were considered in the SA algorithm. Most importantly, a new perturbation mechanism for SA was developed in order to consider specifically the spatial correlation near conditioning asperity contacts. Numerical simulations of fluid flow and solute transport were then performed in these synthetic fractures by the …
Date: December 1, 1999
Creator: Liou, T.S.
System: The UNT Digital Library
Structure and high-temperature properties of Ti{sub 5}Si{sub 3} with interstitial additions (open access)

Structure and high-temperature properties of Ti{sub 5}Si{sub 3} with interstitial additions

This study was motivated by the fact that previous research on the structure and properties of Ti{sub 5}Si{sub 3} showed unacceptably inconsistent results. The primary reason for these inconsistencies was interstitial contamination of Ti{sub 5}Si{sub 3} by carbon, nitrogen and oxygen. Thus, this study measured the effects that these interstitial atoms have on some of the previously reported properties. These properties include crystalline structure, thermal expansion anisotropy, electronic structure and bonding, and high temperature oxidation resistance. In Chapter 2 of this study, the lattice parameters and atomic positions of Ti{sub 5}Si{sub 3} as a function of carbon, nitrogen or oxygen content were measured via x-ray and neutron diffraction. Comparing these lattice parameters to those reported in other studies on supposedly pure Ti{sub 5}Si{sub 3} confirmed that the majority of the previous studies had samples with a considerable amount of interstitial impurities. In fact, the lattice parameter trends given in Chapter 2 can be used to estimate the types and level of impurities in these studies. Furthermore, Chapter 2 discusses how atomic positions change as interstitial atoms are incorporated into the lattice. These changes in atomic separations suggest that strong bonds form between the interstitial atoms and the surrounding titanium atoms. …
Date: December 1, 1999
Creator: Williams, Jason
System: The UNT Digital Library
Dirichlet branes and nonperturbative aspects of supersymmetric string and gauge theories (open access)

Dirichlet branes and nonperturbative aspects of supersymmetric string and gauge theories

In chapter 1 the author reviews some elements of string theory relevant to the rest of this report. He touches on both the classical, i.e. perturbative, string physics before D-branes rise to prominence, and some of the progresses they brought forth. In chapter 2 he proceeds to give an exact algebraic formulation of D-branes in curved spaces. This allows one to classify them in backgrounds of interest and study their geometric properties. He applies this formalism to string theory on Calabi-Yau and other supersymmetry preserving manifolds. Then he studies the behavior of the D-branes under mirror symmetry in chapter 3. Mirror symmetry is known to be a symmetry of string theory perturbatively. He finds evidence for its nonperturbative validity when D-branes are also considered and compute some dynamical consequences. In chapter 4 he turns to examine the consistency of curved and/or intersecting D-brane configurations. They have been used recently to extract information about the field theories that arise in certain limits. It turns out that there are potential quantum mechanical inconsistencies associated with them. What saves the day are certain subtle topological properties of D-branes. This resolution has implications for the conserved charges carried by the D-branes, which he computes …
Date: May 1, 1999
Creator: Yin, Zheng
System: The UNT Digital Library
Nuclear magnetic resonance of laser-polarized noble gases in molecules, materials and organisms (open access)

Nuclear magnetic resonance of laser-polarized noble gases in molecules, materials and organisms

Conventional nuclear magnetic resonance (NMR) spectroscopy and magnetic resonance imaging (MRI) are fundamentally challenged by the insensitivity that stems from the ordinarily low spin polarization achievable in even the strongest NMR magnets. However, by transferring angular momentum from laser light to electronic and nuclear spins, optical pumping methods can increase the nuclear spin polarization of noble gases by several orders of magnitude, thereby greatly enhancing their NMR sensitivity. This dissertation is primarily concerned with the principles and practice of optically pumped nuclear magnetic resonance (OPNMR). The enormous sensitivity enhancement afforded by optical pumping noble gases can be exploited to permit a variety of novel NMR experiments across many disciplines. Many such experiments are reviewed, including the void-space imaging of organisms and materials, NMR and MRI of living tissues, probing structure and dynamics of molecules in solution and on surfaces, and zero-field NMR and MRI.
Date: December 1, 1999
Creator: Goodson, Boyd M.
System: The UNT Digital Library