Acoustic Resonance Characteristics of Rock and Concrete Containing Fractures (open access)

Acoustic Resonance Characteristics of Rock and Concrete Containing Fractures

None
Date: August 1, 1998
Creator: Nakagawa, S.
System: The UNT Digital Library
Advanced far infrared blocked impurity band detectors based on germanium liquid phase epitaxy (open access)

Advanced far infrared blocked impurity band detectors based on germanium liquid phase epitaxy

This research has shown that epilayers with residual impurity concentrations of 5 x 10{sup 13} cm{sup {minus}3} can be grown by producing the purest Pb available in the world. These epilayers have extremely low minority acceptor concentrations, which is ideal for fabrication of IR absorbing layers. The Pb LPE growth of Ge also has the advantageous property of gettering Cu from the epilayer and the substrate. Epilayers have been grown with intentional Sb doping for IR absorption on lightly doped substrates. This research has proven that properly working Ge BIB detectors can be fabricated from the liquid phase as long as pure enough solvents are available. The detectors have responded at proper wavelengths when reversed biased even though the response did not quite reach minimum wavenumbers. Optimization of the Sb doping concentration should further decrease the photoionization energy of these detectors. Ge BIB detectors have been fabricated that respond to 60 cm{sup {minus}1} with low responsivity. Through reduction of the minority residual impurities, detector performance has reached responsivities of 1 A/W. These detectors have exhibited quantum efficiency and NEP values that rival conventional photoconductors and are expected to provide a much more sensitive tool for new scientific discoveries in a …
Date: May 1, 1998
Creator: Olsen, C.S.
System: The UNT Digital Library
I. Advances in NMR Signal Processing. II. Spin Dynamics in Quantum Dissipative Systems (open access)

I. Advances in NMR Signal Processing. II. Spin Dynamics in Quantum Dissipative Systems

None
Date: November 1, 1998
Creator: Lin, Yung-Ya
System: The UNT Digital Library
The applicability of certain Monte Carlo methods to the analysis of interacting polymers (open access)

The applicability of certain Monte Carlo methods to the analysis of interacting polymers

The authors consider polymers, modeled as self-avoiding walks with interactions on a hexagonal lattice, and examine the applicability of certain Monte Carlo methods for estimating their mean properties at equilibrium. Specifically, the authors use the pivoting algorithm of Madras and Sokal and Metroplis rejection to locate the phase transition, which is known to occur at {beta}{sub crit} {approx} 0.99, and to recalculate the known value of the critical exponent {nu} {approx} 0.58 of the system for {beta} = {beta}{sub crit}. Although the pivoting-Metropolis algorithm works well for short walks (N < 300), for larger N the Metropolis criterion combined with the self-avoidance constraint lead to an unacceptably small acceptance fraction. In addition, the algorithm becomes effectively non-ergodic, getting trapped in valleys whose centers are local energy minima in phase space, leading to convergence towards different values of {nu}. The authors use a variety of tools, e.g. entropy estimation and histograms, to improve the results for large N, but they are only of limited effectiveness. Their estimate of {beta}{sub crit} using smaller values of N is 1.01 {+-} 0.01, and the estimate for {nu} at this value of {beta} is 0.59 {+-} 0.005. They conclude that even a seemingly simple system …
Date: May 1, 1998
Creator: Krapp, D.M. Jr.
System: The UNT Digital Library
Applications of electrochemically-modulated liquid chromatography (EMLC): Separations of aromatic amino acids and polycyclic aromatic hydrocarbons (open access)

Applications of electrochemically-modulated liquid chromatography (EMLC): Separations of aromatic amino acids and polycyclic aromatic hydrocarbons

The research in this thesis explores the separation capabilities of a new technique termed electrochemically-modulated liquid chromatography (EMLC). The thesis begins with a general introduction section which provides a literature review of this technique as well as a brief background discussion of the two research projects in each of the next two chapters. The two papers which follow investigate the application of EMLC to the separation of a mixture of aromatic amino acids and of a mixture of polycyclic aromatic hydrocarbons (PAHs). The last section presents general conclusions and summarizes the thesis. References are compiled in the reference section of each chapter. The two papers have been removed for separate processing.
Date: March 27, 1998
Creator: Deng, L.
System: The UNT Digital Library
Compact Intracloud Discharges (open access)

Compact Intracloud Discharges

None
Date: November 1, 1998
Creator: Smith, David A.
System: The UNT Digital Library
A Compton camera for spectroscopic imaging from 100 keV to 1 MeV (open access)

A Compton camera for spectroscopic imaging from 100 keV to 1 MeV

A review of spectroscopic imaging issues, applications, and technology is presented. Compton cameras based on solid state semiconductor detectors stands out as the best system for the nondestructive assay of special nuclear materials. A camera for this application has been designed based on an efficient specific purpose Monte Carlo code developed for this project. Preliminary experiments have been performed which demonstrate the validity of the Compton camera concept and the accuracy of the code. Based on these results, a portable prototype system is in development. Proposed future work is addressed.
Date: December 31, 1998
Creator: Earnhart, J. R. D.
System: The UNT Digital Library
Construction of Effective Electromagnetic Currents for Two-Body Quasipotential Equations (open access)

Construction of Effective Electromagnetic Currents for Two-Body Quasipotential Equations

A systematic algebraic approach for the construction of effective electro-magnetic currents consistent with relativistic two-body quasipotential equations is presented. This approach generalizes the Mandelstam formalism and applies it to a generic quasipotential reduction method. The use of Ward-Takahashi identities for the effective currents guarantees conservation of current matrix elements involving any combination of bound and scattering states. This approach is shown to reproduce previous results for current matrix elements for the particular cases of the Gross and Blankenbecler-Sugar equations. A generic method of truncation of the quasipotential effective current with respect to the number of boson exchanges is introduced.
Date: September 1, 1998
Creator: Krioukov, Dmitri
System: The UNT Digital Library
Control of nonlinear systems using periodic parametric perturbations with application to a reversed field pinch (open access)

Control of nonlinear systems using periodic parametric perturbations with application to a reversed field pinch

In this thesis, the possibility of controlling low- and high-dimensional chaotic systems by periodically driving an accessible system parameter is examined. This method has been carried out on several numerical systems and the MST Reversed Field Pinch. The numerical systems investigated include the logistic equation, the Lorenz equations, the Roessler equations, a coupled lattice of logistic equations, a coupled lattice of Lorenz equations, the Yoshida equations, which model tearing mode fluctuations in a plasma, and a neural net model for magnetic fluctuations on MST. This method was tested on the MST by sinusoidally driving a magnetic flux through the toroidal gap of the device. Numerically, periodic drives were found to be most effective at producing limit cycle behavior or significantly reducing the dimension of the system when the perturbation frequency was near natural frequencies of unstable periodic orbits embedded in the attractor of the unperturbed system. Several different unstable periodic orbits have been stabilized in this way for the low-dimensional numerical systems, sometimes with perturbation amplitudes that were less than 5% of the nominal value of the parameter being perturbed. In high-dimensional systems, limit cycle behavior and significant decreases in the system dimension were also achieved using perturbations with frequencies …
Date: June 1, 1998
Creator: Mirus, Kevin A.
System: The UNT Digital Library
Controlling fluctuations and transport in the reversed field pinch with edge current drive and plasma biasing (open access)

Controlling fluctuations and transport in the reversed field pinch with edge current drive and plasma biasing

Two techniques are employed in the Madison Symmetric Torus (MST) to test and control different aspects of fluctuation induced transport in the Reversed Field Pinch (RFP). Auxiliary edge currents are driven along the magnetic field to modify magnetic fluctuations, and the particle and energy transport associated with them. In addition, strong edge flows are produced by plasma biasing. Their effect on electrostatic fluctuations and the associated particle losses is studied. Both techniques are accomplished using miniature insertable plasma sources that are biased negatively to inject electrons. This type of emissive electrode is shown to reliably produce intense, directional current without significant contamination by impurities. The two most important conclusions derived from these studies are that the collective modes resonant at the reversal surface play a role in global plasma confinement, and that these modes can be controlled by modifying the parallel current profile outside of the reversal surface. This confirms predictions based on magnetohydrodynamic (MHD) simulations that auxiliary current drive in the sense to flatten the parallel current profile can be successful in controlling magnetic fluctuations in the RFP. However, these studies expand the group of magnetic modes believed to cause transport in MST and suggest that current profile control …
Date: September 1, 1998
Creator: Craig, D.J.G.
System: The UNT Digital Library
Creep of Two-Phase Microstructures for Microelectronic Applications (open access)

Creep of Two-Phase Microstructures for Microelectronic Applications

None
Date: December 1, 1998
Creator: Linch Reynolds, Heidi
System: The UNT Digital Library
DC SQUID Spectrometers for Nuclear Quadrupole and Low-Field Nuclear Magnetic Resonance Spectroscopy (open access)

DC SQUID Spectrometers for Nuclear Quadrupole and Low-Field Nuclear Magnetic Resonance Spectroscopy

None
Date: April 1, 1998
Creator: TonThat, Dinh M.
System: The UNT Digital Library
Dynamic behavior of semivolatile organic compounds in indoor air (open access)

Dynamic behavior of semivolatile organic compounds in indoor air

None
Date: December 9, 1998
Creator: Van Loy, M.D.
System: The UNT Digital Library
Effect of uniaxial stress on gallium, beryllium, and copper-doped germanium hole population inversion lasers (open access)

Effect of uniaxial stress on gallium, beryllium, and copper-doped germanium hole population inversion lasers

The effects of stress on germanium lasers doped with single, double, and triple acceptors have been investigated. The results can be explained quantitatively with theoretical calculations and can be attributed to specific changes in the energy levels of acceptors in germanium under stress. In contrast to previous measurements, gallium-doped Ge crystals show a decrease in lasing upon uniaxial stress. The decrease seen here is attributed to the decrease in heavy hole effective mass upon application of uniaxial stress, which results in a decreased population inversion. The discrepancy between this work and previous studies can be explained with the low compensation level of the material used here. Because the amount of ionized impurity scattering in low-compensated germanium lasers is small to begin with, the reduction in scattering with uniaxial stress does not play a significant role in changing the laser operation. Beryllium-doped germanium lasers operate based on a different mechanism of population inversion. In this material it is proposed that holes can transfer between bands by giving their energy to a neutral beryllium atom, raising the hole from the ground to a bound excited state. The free hole will then return to zero energy with some probability of entering the other …
Date: May 1998
Creator: Chamberlin, D. R.
System: The UNT Digital Library
Effects of low-temperature catalytic pretreatments on coal structure and reactivity in liquefaction. Final technical report, Volume 1 - effects of solvents, catalysts and temperature conditions on conversion and structural changes of low-rank coals (open access)

Effects of low-temperature catalytic pretreatments on coal structure and reactivity in liquefaction. Final technical report, Volume 1 - effects of solvents, catalysts and temperature conditions on conversion and structural changes of low-rank coals

The main objectives of this project were to study the effects of low-temperature pretreatments on coal structure and their impacts on subsequent liquefaction. The effects of pretreatment temperatures, catalyst type, coal rank, and influence of solvent were examined. Specific objectives were to identify the basic changes in coal structure induced by catalytic and thermal pretreatments, and to determine the reactivity of the catalytically and thermally treated coals for liquefaction. In the original project management plan it was indicated that six coals would be used for the study. These were to include two each of bituminous, subbituminous, and lignite rank. For convenience in executing the experimental work, two parallel efforts were conducted. The first involved the two lignites and one subbituminous coal; and the second, the two bituminous coals and the remaining subbituminous coal. This Volume presents the results of the first portion of the work, studies on two lignites and one subbituminous coal. The remaining work accomplished under this project will be described and discussed in Volume 2 of this report. The objective of this portion of the project was to determine and compare the effects of solvents, catalysts and reaction conditions on coal liquefaction. Specifically, the improvements of reaction …
Date: January 1, 1998
Creator: Huang, Lili; Schobert, H.H. & Song, Chunshan
System: The UNT Digital Library
Effects of pore fluids in the subsurface on ultrasonic wave propagation (open access)

Effects of pore fluids in the subsurface on ultrasonic wave propagation

This thesis investigates ultrasonic wave propagation in unconsolidated sands in the presence of different pore fluids. Laboratory experiments have been conducted in the sub-MHz range using quartz sand fully saturated with one or two liquids. Elastic wave propagation in unconsolidated granular material is computed with different numerical models: in one-dimension a scattering model based on an analytical propagator solution, in two dimensions a numerical approach using the boundary integral equation method, in three dimensions the local flow model (LFM), the combined Biot and squirt flow theory (BISQ) and the dynamic composite elastic medium theory (DYCEM). The combination of theoretical and experimental analysis yields a better understanding of how wave propagation in unconsolidated sand is affected by (a) homogeneous phase distribution; (b) inhomogeneous phase distribution, (fingering, gas inclusions); (c) pore fluids of different viscosity; (d) wettabilities of a porous medium. The first study reveals that the main ultrasonic P-wave signatures, as a function of the fraction on nonaqueous-phase liquids in initially water-saturated sand samples, can be explained by a 1-D scattering model. The next study investigates effects of pore fluid viscosity on elastic wave propagation, in laboratory experiments conducted with sand samples saturated with fluids of different viscosities. The last study …
Date: May 1, 1998
Creator: Seifert, P.K.
System: The UNT Digital Library
Fourier transform photoelectron diffraction and its application to molecular orbitals and surface structure (open access)

Fourier transform photoelectron diffraction and its application to molecular orbitals and surface structure

Photoemission intensities from the molecular orbitals of c(2x2)CO/Pt(111) over a wide photon energy range were measured and analyzed by the same methods developed for structural studies using core levels. The 4{sigma} orbital center of gravity is found to be concentrated between the C and O atoms, while that of the 5{sigma} orbital lies between the C atom and the Pt surface. The C 1s photoelectron diffraction was used to determine the adsorption geometry. The earlier ambiguity that multiple scattering is needed to correctly model a {chi} curve while single scattering is sufficient for understanding major peaks in the ARPEFS-FTS is clarified by studying the clean Ni(111) surface. In the normal emission case, several different combinations of scattering events have similar path length differences (PLDs), and can either cancel each other or enhance the corresponding FT peak. In the off-normal case the degeneracy is greatly reduced due to the lower degree of symmetry. In normal emission AR PEFS, up to third order multiple scattering is needed to describe fully both the {chi} curve and its FT spectrum. To improve the spectral resolution in the ARPEFS-FT analysis, several new spectral analysis methods are introduced. With both autocorrelation autoregression (ACAR) and autocorrelation eigenvector …
Date: November 30, 1998
Creator: Zhou, Xin
System: The UNT Digital Library
Gas Phase Chromatography of some Group 4, 5, and 6 Halides (open access)

Gas Phase Chromatography of some Group 4, 5, and 6 Halides

Gas phase chromatography using The Heavy Element Volatility Instrument (HEVI) and the On Line Gas Apparatus (OLGA III) was used to determine volatilities of ZrBr{sub 4}, HfBr{sub 4}, RfBr{sub 4}, NbBr{sub 5}, TaOBr{sub 3}, HaCl{sub 5}, WBr{sub 6}, FrBr, and BiBr{sub 3}. Short-lived isotopes of Zr, Hf, Rf, Nb, Ta, Ha, W, and Bi were produced via compound nucleus reactions at the 88-Inch Cyclotron at Lawrence Berkeley National Laboratory and transported to the experimental apparatus using a He gas transport system. The isotopes were halogenated, separated from the other reaction products, and their volatilities determined by isothermal gas phase chromatography. Adsorption Enthalpy ({Delta}H{sub a}) values for these compounds were calculated using a Monte Carlo simulation program modeling the gas phase chromatography column. All bromides showed lower volatility than molecules of similar molecular structures formed as chlorides, but followed similar trends by central element. Tantalum was observed to form the oxybromide, analogous to the formation of the oxychloride under the same conditions. For the group 4 elements, the following order in volatility and {Delta}H{sub a} was observed: RfBr{sub 4} &gt; ZrBr{sub 4} &gt; HfBr{sub 4}. The {Delta}H{sub a} values determined for the group 4, 5, and 6 halides are in general …
Date: October 1, 1998
Creator: Sylwester, Eric Robert
System: The UNT Digital Library
The influence of surface topography on the forming friction of automotive aluminum sheet (open access)

The influence of surface topography on the forming friction of automotive aluminum sheet

Interest in utilizing aluminum alloys in automobiles has increased in recent years as a result of the desire to lower automobile weight and, consequently, increase fuel economy. While aluminum alloy use in cast parts has increased, outer body panel applications are still being investigated. The industry is interested in improving the formability of these sheet alloys by a combination of alloy design and processing. A different avenue of improving the formability of these alloys may be through patterning of the sheet surface. Surface patterns hold the lubricant during the forming process, with a resulting decrease in the sheet-die surface contact. While it has been speculated that an optimum surface pattern would consist of discrete cavities, detailed investigation into the reduction of forming friction by utilizing discrete patterns is lacking. A series of discrete patterns were investigated to determine the dependence of the forming friction of automotive aluminum alloys on pattern lubricant carrying capacity and on material strength. Automotive aluminum alloys used in outer body panel applications were rolled on experimental rolls that had been prepared with a variety of discrete patterns. All patterns for each alloy were characterized before and after testing both optically and, to determine pattern lubricant capacity, …
Date: May 1, 1998
Creator: Kramer, P. A.
System: The UNT Digital Library
Inner-shell photoionized x-ray lasers (open access)

Inner-shell photoionized x-ray lasers

The inner-shell photoionized x-ray lasing scheme is an attractive method for achieving x-ray lasing at short wavelengths, via population inversion following inner-shell photoionization (ISPI). This scheme promises both a short wavelength and a short pulse source of coherent x rays with high average power. In this dissertation a very complete study of the ISPI x-ray laser scheme is done concerning target structure, filter design and lasant medium. An investigation of the rapid rise time of x-ray emission from targets heated by an ultra-short pulse high-intensity optical laser was conducted for use as the x-ray source for ISPI x-ray lasing. Lasing by this approach in C at a wavelength of 45 {angstrom} requires a short pulse (about 50 fsec) driving optical laser with an energy of 1-5 J and traveling wave optics with an accuracy of {approximately} 15 {micro}m. The optical laser is incident on a high-Z target creating a high-density plasma which emits a broadband spectrum of x rays. This x-ray source is passed through a filter to eliminate the low-energy x rays. The remaining high-energy x rays preferentially photoionize inner-shell electrons resulting in a population inversion. Inner-shell photoionized x-ray lasing relies on the large energy of a K-{alpha} transition …
Date: June 1, 1998
Creator: Moon, S. J.
System: The UNT Digital Library
Interfacial characterization and analytical applications of chemically-modified surfaces (open access)

Interfacial characterization and analytical applications of chemically-modified surfaces

The goal of this work is to explore several new strategies and approaches to the surface modification and the microscopic characterization of interfaces in the areas mainly targeting sensor technologies that are of interest to environmental control or monitoring, and scanning probe microscopies techniques that can monitor interfacial chemical reactions in real time. Centered on the main theme, four specific topics are presented as four chapters in this dissertation following the general introduction. Chapter 1 describes the development of two immobilization schemes for covalently immobilizing fluoresceinamine at cellulose acetate and its application as a pH sensing film. Chapter 2 investigates the applicability of SFM to following the base-hydrolysis of a dithio-bis(succinimidylundecanoate) monolayer at gold in situ. Chapter 3 studies the mechanism for the accelerated rate of hydrolysis of the dithio-bis(succinimidylundecanoate) monolayer at Au(111) surface. Chapter 4 focuses on the development of an electrochemical approach to the elimination of chloride interference in Chemical Oxygen Demand (COD) analysis of waste water. The procedures, results and conclusions are described in each chapter. This report contains the introduction, references, and general conclusions. Chapters have been processed separately for inclusion on the data base. 95 refs.
Date: February 23, 1998
Creator: Wang, J.
System: The UNT Digital Library
Laser-plasma interactions relevant to Inertial Confinement Fusion (open access)

Laser-plasma interactions relevant to Inertial Confinement Fusion

Research into laser-driven inertial confinement fusion is now entering a critical juncture with the construction of the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL). Many of the remaining unanswered questions concerning NIF involve interactions between lasers and plasmas. With the eventual goal of fusion power in mind, laser-plasma interactions relevant to laser fusion schemes is an important topic in need of further research. This work experimentally addresses some potential shortcuts and pitfalls on the road to laser-driven fusion power. Current plans on NIF have 192 laser beams directed into a small cylindrical cavity which will contain the fusion fuel; to accomplish this the beams must cross in the entrance holes, and this intersection will be in the presence of outward-flowing plasma. To investigate the physics involved, interactions of crossing laser beams in flowing plasmas are investigated with experiments on the Nova laser facility at LLNL. It was found that in a flowing plasma, energy is transferred between two crossing laser beams, and this may have deleterious consequences for energy balance and ignition in NIF. Possible solutions to this problem are presented. A recently-proposed alternative to standard laser-driven fusion, the ''fast ignitor'' concept, is also experimentally addressed in …
Date: November 2, 1998
Creator: Wharton, Kenneth Bradford
System: The UNT Digital Library
Markov transitions and the propagation of chaos (open access)

Markov transitions and the propagation of chaos

The propagation of chaos is a central concept of kinetic theory that serves to relate the equations of Boltzmann and Vlasov to the dynamics of many-particle systems. Propagation of chaos means that molecular chaos, i.e., the stochastic independence of two random particles in a many-particle system, persists in time, as the number of particles tends to infinity. We establish a necessary and sufficient condition for a family of general n-particle Markov processes to propagate chaos. This condition is expressed in terms of the Markov transition functions associated to the n-particle processes, and it amounts to saying that chaos of random initial states propagates if it propagates for pure initial states. Our proof of this result relies on the weak convergence approach to the study of chaos due to Sztitman and Tanaka. We assume that the space in which the particles live is homomorphic to a complete and separable metric space so that we may invoke Prohorov's theorem in our proof. We also s how that, if the particles can be in only finitely many states, then molecular chaos implies that the specific entropies in the n-particle distributions converge to the entropy of the limiting single-particle distribution.
Date: December 1, 1998
Creator: Gottlieb, A.
System: The UNT Digital Library
Measurement of time dependent B{sub d}{sup 0} {bar B}{sub d}{sup 0} mixing parameter using opposite side lepton and D* meson in p{bar p} collisions at {radical}s = 1.8 TeV (open access)

Measurement of time dependent B{sub d}{sup 0} {bar B}{sub d}{sup 0} mixing parameter using opposite side lepton and D* meson in p{bar p} collisions at {radical}s = 1.8 TeV

This thesis presents the results from the investigation of time dependent B{sub d}{sup 0} {bar B}{sub d}{sup 0} mixing in B {yields} lepton X, B{sub d}{sup 0} {yields} D*{sup -} {yields} {bar D}{sup 0} {pi}{sup -}, {bar D}{sup 0} {yields} K{sup +} {pi}{sup -} channel in p{bar p} collisions at {radical}s = 1.8 TeV using 110 pb{sup -1} data collected with the CDF detector at the Fermilab Tevatron Collider. The {bar D}{sup 0} vertex is reconstructed. The B{sub d}{sup 0} decay length is estimated using the distance from the primary vertex to the measured position of the D{sup 0} vertex. The B{sup 0} momentum is estimated using the D{sup 0} momentum and a kinematic correction factor from Monte Carlo. With the dilution floating, {Delta}M{sub d} = 0.55 {+-}{sub 0.16}{sup 0.15} (stat) {+-} 0.06 (syst)ps{sup -1} is measured.
Date: January 13, 1998
Creator: Vandenbrink, S.C.
System: The UNT Digital Library