4,509 Matching Results

Results open in a new window/tab.

25--30 T water cooled pulse magnet concept for neutron scattering experiment (open access)

25--30 T water cooled pulse magnet concept for neutron scattering experiment

The Manuel Lujan Jr. Neutron Scattering Center, Los Alamos National Laboratory is in need of a high field, split-pair, pulse magnet that would provide a 25--30 T field in a 25 mm bore and 10 mm split gap for 2--4 ms at a repetition rate of 2 Hz. Single stack Bitter magnets of this type providing less than 20 T vertical field in the split gap have been constructed before. To produce higher fields, there is a need to use a multiple layer coil with internal reinforcement. The magnet should withstand up to 10{sup 7} cycles of loading and unloading. The authors have conducted a feasibility study that address these unique requirements.
Date: December 31, 1997
Creator: Eyssa, Y. M.; Walsh, R. P.; Miller, J. R.; Pernambuco-Wise, P.; Bird, M. D.; Schneider-Muntau, H. J. et al.
System: The UNT Digital Library
Accelerator-driven destruction of long-lived radioactive waste and energy production (open access)

Accelerator-driven destruction of long-lived radioactive waste and energy production

Nuclear waste management involves many issues. ATW is an option that can assist a repository by enhancing its capability and thereby assist nuclear waste management. Technology advances and the recent release of liquid metal coolant information from Russia has had an enormous impact on the viability of an ATW system. It now appears economic with many repository enhancing attributes. In time, an ATW option added to present repository activities will provide the public with a nuclear fuel cycle that is acceptable from economic and environmental points of view.
Date: December 31, 1997
Creator: Schriber, S. O.
System: The UNT Digital Library
An accelerator-driven reactor for meeting future energy demand (open access)

An accelerator-driven reactor for meeting future energy demand

Fissile fuel can be produced at a high rate using an accelerator-driven Pu-fueled subcritical fast reactor which avoids encountering a shortage of Pu during a high growth rate in the production of nuclear energy. Furthermore, the necessity of the early introduction of the fast reactor can be moderated. Subcritical operation provides flexible nuclear energy options along with high neutron economy for producing the fuel, for transmuting high-level waste such as minor actinides, and for efficiently converting excess and military Pu into proliferation-resistant fuel.
Date: December 31, 1997
Creator: Takahashi, Hiroshi; Yang, Y. & Yu, A.
System: The UNT Digital Library
Actinide immobilization in the subsurface environment by in-situ treatment with a hydrolytically unstable organophosphorus complexant: Uranyl uptake by calcium phytate (open access)

Actinide immobilization in the subsurface environment by in-situ treatment with a hydrolytically unstable organophosphorus complexant: Uranyl uptake by calcium phytate

In addition to naturally occurring uranium and thorium, actinide ions exist in the subsurface environment as a result of accidental releases and intentional disposal practices associated with nuclear weapons production. These species present a significant challenge to cost-effective remediation of contaminated environments. An attractive approach to decreasing the probability of actinide migration in the subsurface is to transform the ions into a less mobile form by remote treatment. We have under development a process which relies on a polyfunctional organophosphorus complexant to sequester the mobile metal ions by complexation/cation exchange in the near term, and to subsequently decompose, transforming the actinides into insoluble phosphate mineral forms in the long term. Studies to date include identification of a suitable organophosphorus reagent, profiling of its decomposition kinetics, verification of the formation of phosphate mineral phases upon decomposition of the reagent, and extensive comparison of the actinide uptake ability of the calcium salt of the reagent as compared with hydroxyapatite. In this report, we briefly describe the process with focus on the cation exchange behavior of the calcium salt of the organophosphorus sequestrant.
Date: December 31, 1997
Creator: Nash, K. L.; Jensen, M. P. & Schmidt, M. A.
System: The UNT Digital Library
Advanced hot-gas filter development (open access)

Advanced hot-gas filter development

Coal is the most abundant fossil-fuel resource in the United States. `Clean coal` technologies, such as pressurized fluidized-bed combustion (PFBC) and integrated gasification combined-cycle (IGCC), require a hot gas filter to remove the corrosive and erosive coal ash entrained in the combustion gas stream. These hot gas filters, or candle filters, must be cost-effective while able to withstand the effects of corrosion, elevated temperature, thermal shock, and temperature transients. Ash loadings may range from 500 to 10,000 ppm by weight, and may contain particles as fine as 0.008 mils. The operating environment for the hot gas filter can range in pressure from 10 to 20 atm, in temperatures from 700 to 1750{degrees}F, and can be oxidizing or reducing. In addition, the process gases may contain volatile chloride, sulfur, and alkali species. Field testing of various commercially available, porous, ceramic filter matrices has demonstrated a loss of up to 50 percent of as-manufactured strength after 1,000 to 2,000 hours of exposure to these operating conditions, although full-scale elements have remained intact during normal process operations. Ultramet, a small business specializing in advanced materials R&D, has developed a new class of hot gas filter materials that offers lower back-pressure, higher permeability, longer …
Date: December 31, 1997
Creator: Stankiewicz, E.P.; Sherman, A.J. & Zinn, A.A.
System: The UNT Digital Library
Advanced hydraulic fracturing methods to create in situ reactive barriers (open access)

Advanced hydraulic fracturing methods to create in situ reactive barriers

This article describes the use of hydraulic fracturing to increase permeability in geologic formations where in-situ remedial action of contaminant plumes will be performed. Several in-situ treatment strategies are discussed including the use of hydraulic fracturing to create in situ redox zones for treatment of organics and inorganics. Hydraulic fracturing methods offer a mechanism for the in-situ treatment of gently dipping layers of reactive compounds. Specialized methods using real-time monitoring and a high-energy jet during fracturing allow the form of the fracture to be influenced, such as creation of assymmetric fractures beneath potential sources (i.e. tanks, pits, buildings) that should not be penetrated by boring. Some examples of field applications of this technique such as creating fractures filled with zero-valent iron to reductively dechlorinate halogenated hydrocarbons, and the use of granular activated carbon to adsorb compounds are discussed.
Date: December 31, 1997
Creator: Murdoch, L.; Siegrist, B. & Meiggs, T.
System: The UNT Digital Library
Advanced Test Reactor Outage Risk Assessment (open access)

Advanced Test Reactor Outage Risk Assessment

Beginning in 1997, risk assessment was performed for each Advanced Test Reactor (ATR) outage aiding the coordination of plant configuration and work activities (maintenance, construction projects, etc.) to minimize the risk of reactor fuel damage and to improve defense-in-depth. The risk assessment activities move beyond simply meeting Technical Safety Requirements to increase the awareness of risk sensitive configurations, to focus increased attention on the higher risk activities, and to seek cost-effective design or operational changes that reduce risk. A detailed probabilistic risk assessment (PRA) had been performed to assess the risk of fuel damage during shutdown operations including heavy load handling. This resulted in several design changes to improve safety; however, evaluation of individual outages had not been performed previously and many risk insights were not being utilized in outage planning. The shutdown PRA provided the necessary framework for assessing relative and absolute risk levels and assessing defense-in-depth. Guidelines were written identifying combinations of equipment outages to avoid. Screening criteria were developed for the selection of work activities to receive review. Tabulation of inherent and work-related initiating events and their relative risk level versus plant mode has aided identification of the risk level the scheduled work involves. Preoutage reviews are …
Date: December 31, 1997
Creator: Thatcher, T. A. & Atkinson, S. A.
System: The UNT Digital Library
AFBC-HAGT, an efficient small scale power plant (open access)

AFBC-HAGT, an efficient small scale power plant

A team comprised of the Energy and Environmental Research Corporation (EER), the Will-Burt Company, and the Ohio Agricultural Research and Development Center (OARDC) designed installed and tested a pilot scale atmospheric fluidized (bubbling) bed combustion (AFBC) system to heat hot water. Following testing, a commercial prototype unit was installed at Cedar Lane Farms (CLF), near Wooster, Ohio. The unit was started up in January, 1995, and is currently in operation. It provides hot water for greenhouse heating, requiring about two hours per day of operator attention. The development was funded by the Ohio Coal Development Office, the U.S. Department of Energy, and the team members. Based on the success of the prototype operation a commercial size unit was recently designed for hot water heating use. This small scale AFBC system can be designed not only to produce hot water or steam but also to efficiently generate electricity (60 kWe to 3.5 MWe size range). Most small scale fluidized bed systems use in-bed heat transfer tubes to generate saturated steam which can then be superheated and fed to a steam turbine for electrical power generation. This AFBC has no internal heat transfer surfaces. It can be combined with an air heater …
Date: December 31, 1997
Creator: Ashworth, Robert A.; Webner, Rodney L. & Keener, Harold M.
System: The UNT Digital Library
Aging management of major LWR components with nondestructive evaluation (open access)

Aging management of major LWR components with nondestructive evaluation

Nondestructive evaluation of material damage can contribute to continued safe, reliable, and economical operation of nuclear power plants through their current and renewed license period. The aging mechanisms active in the major light water reactor components are radiation embrittlement, thermal aging, stress corrosion cracking, flow-accelerated corrosion, and fatigue, which reduce fracture toughness, structural strength, or fatigue resistance of the components and challenge structural integrity of the pressure boundary. This paper reviews four nondestructive evaluation methods with the potential for in situ assessment of damage caused by these mechanisms: stress-strain microprobe for determining mechanical properties of reactor pressure vessel and cast stainless materials, magnetic methods for estimating thermal aging damage in cast stainless steel, positron annihilation measurements for estimating early fatigue damage in reactor coolant system piping, and ultrasonic guided wave technique for detecting cracks and wall thinning in tubes and pipes and corrosion damage to embedded portion of metal containments.
Date: December 31, 1997
Creator: Shah, V. N.; MacDonald, P. E.; Akers, D. W.; Sellers, C.; Murty, K. L.; Miraglia, P. Q. et al.
System: The UNT Digital Library
Alpha-Driven Alfven Instabilities and Velocity Shear Effects (open access)

Alpha-Driven Alfven Instabilities and Velocity Shear Effects

Energetic particle populations such as fusion alphas, beams and RF tails can drive a wide variety of shear Alfven instabilities in toroidal confinement systems. These instabilities lead to enhanced loss of fast ions and decreased heating efficiencies. Our gyrofluid stability model has recently been extended to include sheared plasma flow velocities. We also discuss recent results from applying this model to ITER, TFTR, and W7-AS.
Date: December 31, 1997
Creator: Spong, D. A.; Carreras, B. A.; Jeboeuf, J-N.; Weller, A.; Nazikian, R. & Zweben, S. J.
System: The UNT Digital Library
Analytical Model for Radial Injection of NORM With a Step-Function Source (open access)

Analytical Model for Radial Injection of NORM With a Step-Function Source

This paper presents information on a model used to analyze the underground injection of wastes containing naturally occurring radioactive material (NORM). This model uses a step-function contaminant source, which models intermittent NORM injection in a continuous brine injection well. The governing equations are presented and transformed into Laplace space, where the equations are solved. The numerical inversion of this solution is detailed. The model is cast in a nondimensional form such that a single model solution is valid for a large number of different field conditions. This paper also presents a case study that compares this analytical model to a simple mixing model for a field demonstration site in west Texas. This case study showed that at distances of more than 100 meters from the injection well, calculated subsurface NORM activities were lower than proposed US Environmental Protection Agency drinking water standards. The comparison also shows that the simple mixing model overpredicts activity levels close to the injection well and underpredicts activities further from the well.
Date: December 31, 1997
Creator: Williams, G. P.; Tomasko, D.; Smith, K. & Blunt, D.
System: The UNT Digital Library
Analytical techniques for instrument design -- Matrix methods (open access)

Analytical techniques for instrument design -- Matrix methods

The authors take the traditional Cooper-Nathans approach, as has been applied for many years for steady-state triple-axis spectrometers, and consider its generalization to other inelastic scattering spectrometers. This involves a number of simple manipulations of exponentials of quadratic forms. In particular, they discuss a toolbox of matrix manipulations that can be performed on the 6-dimensional Cooper-Nathans matrix. They show how these tools can be combined to solve a number of important problems, within the narrow-band limit and the gaussian approximation. They will argue that a generalized program that can handle multiple different spectrometers could (and should) be written in parallel to the Monte-Carlo packages that are becoming available. They also discuss the complementarity between detailed Monte-Carlo calculations and the approach presented here. In particular, Monte-Carlo methods traditionally simulate the real experiment as performed in practice, given a model scattering law, while the Cooper-Nathans method asks the inverse question: given that a neutron turns up in a particular spectrometer configuration (e.g. angle and time of flight), what is the probability distribution of possible scattering events at the sample? The Monte-Carlo approach could be applied in the same spirit to this question.
Date: December 31, 1997
Creator: Robinson, R.A.
System: The UNT Digital Library
Anticipating Potential Waste Acceptance Criteria for Defense Spent Nuclear Fuel (open access)

Anticipating Potential Waste Acceptance Criteria for Defense Spent Nuclear Fuel

The Office of Environmental Management of the U.S. Department of Energy is responsible for the safe management and disposal of DOE owned defense spent nuclear fuel and high level waste (DSNF/DHLW). A desirable option, direct disposal of the waste in the potential repository at Yucca Mountain, depends on the final waste acceptance criteria, which will be set by DOE`s Office of Civilian Radioactive Waste Management (OCRWM). However, evolving regulations make it difficult to determine what the final acceptance criteria will be. A method of anticipating waste acceptance criteria is to gain an understanding of the DOE owned waste types and their behavior in a disposal system through a performance assessment and contrast such behavior with characteristics of commercial spent fuel. Preliminary results from such an analysis indicate that releases of 99Tc and 237Np from commercial spent fuel exceed those of the DSNF/DHLW; thus, if commercial spent fuel can meet the waste acceptance criteria, then DSNF can also meet the criteria. In large part, these results are caused by the small percentage of total activity of the DSNF in the repository (1.5%) and regulatory mass (4%), and also because commercial fuel cladding was assumed to provide no protection.
Date: December 31, 1997
Creator: Rechard, R. P.; Lord, M. E.; Stockman, C. T. & McCurley, R. D.
System: The UNT Digital Library
The Application of High-Resolution Gamma-Ray Spectrometry (HRGS) to Nuclear Safeguards, Nonproliferation, and Arms Control Activities (open access)

The Application of High-Resolution Gamma-Ray Spectrometry (HRGS) to Nuclear Safeguards, Nonproliferation, and Arms Control Activities

While well-developed methodologies exist for the employment of high- resolution gamma ray spectrometry (HRGS) in determining the isotopic composition of plutonium samples, the potential capabilities of such measurements in determining the properties of nuclear materials otherwise remain largely unexploited. These measurements contain information sufficiently detailed such that not only can the isotopic composition of uranium and plutonium materials be determined, but the details of the spectrum obtained will depend reproducibly upon other factors including the total mass, density, chemical composition, and geometrical configuration of the material, and for certain materials, the elapsed time since chemical processing. The potential thus exists to obtain a `gamma-ray fingerprint` for typical containers or assemblies of nuclear material which will then serve to identify that class of item in a later confirmatory measurement. These measurements have the additional advantage that, by comparison with active interrogation techniques which usually require the introduction of some extraneous form of radiation or other intrusive activity, they are totally passive, and thus impose only minimal additional safety or regulatory burdens on the operators. In the application of these measurements to the verification of treaty-limited items, where the information acquired may be sensitive in nature, the use of the CIVET (Controlled …
Date: December 31, 1997
Creator: Kane, Walter R.; Lemley, James R. & Forman, Leon
System: The UNT Digital Library
Application of the RADTRAN 5 stop model (open access)

Application of the RADTRAN 5 stop model

A number of environmental impact analyses with the RADTRAN computer code have shown that dose to persons at stops is one of the largest components of incident-free dose during overland carriage of spent fuel and other radioactive materials (e.g., USDOE, 1994). The input data used in these analyses were taken from a 1983 study that reports actual observations of spent fuel shipments by truck. Early RADTRAN stop models, however, were insufficiently flexible to take advantage of the detailed information in the study. A more recent study of gasoline service stations that specialize in servicing large trucks, which are the most likely stop locations for shipments of Type B packages in the United States, has provided additional, detailed data on refueling/meal stops. The RADTRAN 5 computer code for transportation risk analysis allows exposures at stops to be more fully modeled than have previous releases of the code and is able to take advantage of detailed data. It is the intent of this paper first to compare results from RADTRAN and RADTRAN 5 for the old, low-resolution form of input data, and then to demonstrate what effect the new data and input format have on stop-dose estimates for an individual stop and …
Date: December 31, 1997
Creator: Neuhauser, K. S.; Kanipe, R. L. & Weiner, R. F.
System: The UNT Digital Library
An Assessment of Ore Waste and Dilution Resulting From Buffer/Choke Blasting in Surface Gold Mines (open access)

An Assessment of Ore Waste and Dilution Resulting From Buffer/Choke Blasting in Surface Gold Mines

A discrete element computer program named DMC{underscore}BLAST (Distinct Motion Code) has been under development since 1987 for modeling rock blasting (Preece {ampersand} Taylor, 1989). This program employs explicit time integration and uses spherical or cylindrical elements that are represented as circles in two dimensions (2-D). DMC{underscore}BLAST calculations compare favorably with data from actual bench blasts (Preece et al, 1993). Buffer Choke blasting is commonly used in surface gold mines to break the rock and dilate it sufficiently for ease of digging, with the assumption of insignificant horizontal movement. The blast designs usually call for relatively shallow holes benches ({lt} 11 m) with small blastholes (approx. 165 mm), small burdens and spacings ({lt}5 m), often with 50% or more of the hole stemmed. Control of blast-induced horizontal movement is desired because the ore is assayed in place from the blasthole drill cuttings and digging polygons of ore and waste are laid out before the blast. Horizontal movement at the ore waste boundary can result in dilution of the ore or loss of ore with the waste. The discrete element computer program DMC{underscore}BLAST has been employed to study spatial variation of horizontal rock motion during buffer choke blasting. Patterns of rock motion …
Date: December 31, 1997
Creator: Preece, Dale S.; Chung, Stephen H. & Tidman, J. Paul
System: The UNT Digital Library
Associated {Lambda} production at Jefferson Lab (open access)

Associated {Lambda} production at Jefferson Lab

The {sup 1}H(e, e{prime}K{sup +}){Lambda} and {sup 1}H(e, e{prime}K{sup +}){Sigma}{sup 0} reactions were studied as a function of the squared four-momentum-transfer, Q{sup 2}, and the virtual photon polarization, {var_epsilon}, thus enabling the separation of the longitudinal and transverse parts of the cross section. The existence of a sensibly large longitudinal component for the {sup 1}H(e, e{prime}K{sup +}){Lambda} reaction seems to be sustained by these data.
Date: December 31, 1997
Creator: Niculescu, G.; Baker, O. K.; Avery, S. & Collaboration, E93018
System: The UNT Digital Library
Asteroseismology of DAV White Dwarf Stars (open access)

Asteroseismology of DAV White Dwarf Stars

The author reviews the seismological structural determinations of ZZ Ceti stars done to date, and supplement these with additional preliminary determinations of his own. He compares the constraints on the hydrogen layer mass to see what trends emerge and also determines if the observed hydrogen layer masses are consistent with proposed theories. He then looks ahead to the prospects of further DAV white dwarf seismology.
Date: December 31, 1997
Creator: Bradley, Paul A.
System: The UNT Digital Library
Atomic collision databases and data services -- A survey (open access)

Atomic collision databases and data services -- A survey

Atomic collision databases and data services constitute an important resource for scientific and engineering applications such as astrophysics, lighting, materials processing, and fusion energy, as well as an important knowledge base for current developments in atomic collision physics. Data centers and research groups provide these resources through a chain of efforts that include producing and collecting primary data, performing evaluation of the existing data, deducing scaling laws and semiempirical formulas to compactly describe and extend the data, producing the recommended sets of data, and providing convenient means of maintaining, updating, and disseminating the results of this process. The latest efforts have utilized modern database, storage, and distribution technologies including the Internet and World Wide Web. Given here is an informal survey of how these resources have developed, how they are currently characterized, and what their likely evolution will lead them to become in the future.
Date: December 31, 1997
Creator: Schultz, D.R.
System: The UNT Digital Library
Automatic tuning of the reinforcement function (open access)

Automatic tuning of the reinforcement function

The aim of this work is to present a method that helps tuning the reinforcement function parameters in a reinforcement learning approach. Since the proposal of neural based implementations for the reinforcement learning paradigm (which reduced learning time and memory requirements to realistic values) reinforcement functions have become the critical components. Using a general definition for reinforcement functions, the authors solve, in a particular case, the so called exploration versus exploitation dilemma through the careful computation of the RF parameter values. They propose an algorithm to compute, during the exploration part of the learning phase, an estimate for the parameter values. Experiments with the mobile robot Nomad 200 validate their proposals.
Date: December 31, 1997
Creator: Touzet, Claude & Santos, Juan Miguel
System: The UNT Digital Library
Benchmarking and Performance Improvement at Rocky Flats Environmental Technology Site (open access)

Benchmarking and Performance Improvement at Rocky Flats Environmental Technology Site

The Rocky Flats Environmental Technology Site (RFETS) has initiated a major work process improvement campaign using the tools of formalized benchmarking and streamlining. This paper provides insights into some of the process improvement activities performed at Rocky Flats from November 1995 through December 1996. It reviews the background, motivation, methodology, results, and lessons learned from this ongoing effort. The paper also presents important gains realized through process analysis and improvement including significant cost savings, productivity improvements, and an enhanced understanding of site work processes.
Date: December 31, 1997
Creator: Elliott, C.
System: The UNT Digital Library
Calculations on Electron Capture in Low Energy Ion-Molecule Collisions (open access)

Calculations on Electron Capture in Low Energy Ion-Molecule Collisions

Recent progress on the application of a quantal, molecular-orbital, close-coupling approach to the calculation of electron capture in collisions of multiply charged ions with molecules is discussed. Preliminary results for single electron capture by N{sup 2+} with H{sub 2} are presented. Electron capture by multiply charged ions colliding with H{sub 2} is an important process in laboratory and astrophysical plasmas. It provides a recombination mechanism for multiply charged ions in x-ray ionized astronomical environments which may have sparse electron and atomic hydrogen abundances. In the divertor region of a tokamak fusion device, charge exchange of impurity ions with H{sub 2} plays a role in the ionization balance and the production of radiative energy loss leading to cooling, X-ray and ultraviolet auroral emission from Jupiter is believed to be due to charge exchange of O and S ions with H{sub 2} in the Jovian atmosphere. Solar wind ions interacting with cometary molecules may have produced the x-rays observed from Comet Hyakutake. In order to model and understand the behavior of these environments, it is necessary to obtain total, electronic state-selective (ESS), and vibrational (or rotational) state-selective (VSS) capture cross sections for collision energies as low as 10 meV/amu to as high …
Date: December 31, 1997
Creator: Stancil, P. C.; Zygelman, B. & Kirby, K.
System: The UNT Digital Library
Cascade Multilevel Inverters for Utility Applications (open access)

Cascade Multilevel Inverters for Utility Applications

Cascade multilevel inverters have been developed by the authors for utility applications. A cascade M-level inverter consists of (M-1)/2 H- bridges in which each bridge has its own separate dc source. The new inverter: (1) can generate almost sinusoidal waveform voltage while only switching one time per fundamental cycle, (2) can eliminate transformers of multipulse inverters used in conventional utility interfaces and static var compensators, and (3) makes possible direct parallel or series connection to medium- and high-voltage power systems without any transformers. In other words, the cascade inverter is much more efficient and suitable for utility applications than traditional multipulse and pulse width modulation (PWM) inverters. The authors have experimentally demonstrated the superiority of the new inverter for reactive power (var) and harmonic compensation. This paper will summarize features,feasibility, and control schemes of the cascade inverter for utility applications including utility interface of renewable energy, voltage regulation, var compensation, and harmonic filtering in power systems.Analytical, simulated, and experimental results demonstrate the superiority of the new inverters.
Date: December 31, 1997
Creator: Peng, F.Z., McKeever, J.W., Adams, D.J.
System: The UNT Digital Library
Cask crush pad analysis using detailed and simplified analysis methods (open access)

Cask crush pad analysis using detailed and simplified analysis methods

A crush pad has been designed and analyzed to absorb the kinetic energy of a hypothetically dropped spent nuclear fuel shipping cask into a 44-ft. deep cask unloading pool at the Fluorinel and Storage Facility (FAST). This facility, located at the Idaho Chemical Processing Plant (ICPP) at the Idaho national Engineering and Environmental Laboratory (INEEL), is a US Department of Energy site. The basis for this study is an analysis by Uldrich and Hawkes. The purpose of this analysis was to evaluate various hypothetical cask drop orientations to ensure that the crush pad design was adequate and the cask deceleration at impact was less than 100 g. It is demonstrated herein that a large spent fuel shipping cask, when dropped onto a foam crush pad, can be analyzed by either hand methods or by sophisticated dynamic finite element analysis using computer codes such as ABAQUS. Results from the two methods are compared to evaluate accuracy of the simplified hand analysis approach.
Date: December 31, 1997
Creator: Uldrich, E.D. & Hawkes, B.D.
System: The UNT Digital Library