Degree Discipline

Degree Level

2 Matching Results

Results open in a new window/tab.

Characterization of Aspartate Transcarbamoylase in the Archaebacterium Methanococcus Jannaschii (open access)

Characterization of Aspartate Transcarbamoylase in the Archaebacterium Methanococcus Jannaschii

Asparate transcarbamoylase catalyzes the first committed step in the de novo synthesis of pyrmidine nucleotides UMP, UDP, UTP, and CTP. The archetype enzyme found in Escherichia coli (310 kDa) exhibits sigmodial substrate binding kinetics with positive control by ATP and negative control with CTP and UTP. The ATCase characterized in this study is from the extreme thermophilic Archaebacterium, Methanococcus jannaschii. The enzyme was very stable at elevated temperatures and possessed activity from 20 degrees Celsius to 90 degrees Celsius. M. Jannaschii ATCase retained 75% of its activity after incubation at 100 degrees Celsius for a period of 90 minutes. No sigmodial allosteric response to substrate for the enzyme was observed. Velocity substrate plots gave Michaelis-Menten (hyperbolic) kinetics. The Km for aspartate was 7 mM at 30 degrees Celsius and the KM for carbamoylphosphate was .125 mM. The enzyme from M. jannaschii had a broad pH response with an optimum above pH 9. Kinetic measurements were significantly affected by changes in pH and temperature. The enzyme catalyzed reaction had an energy of activation of 10,300 calories per mole. ATCase from M. jannaschii was partially purified. The enzyme was shown to have a molecular weight of 110,000 Da., with a subunit molecular …
Date: December 1996
Creator: Stewart, John E. B. (John Edward Bakos)
System: The UNT Digital Library
Regulatory Divergence of Aspartate Transcarbamoylase from the Pseudomonads (open access)

Regulatory Divergence of Aspartate Transcarbamoylase from the Pseudomonads

Aspartate transcarbamoylase (ATCase) was purified from 16 selected bacterial species including existing Pseudomonas species and former species reassigned to new genera. An enormous diversity was seen among the 16 enzymes with each class of ATCase being represented. The smallest class, class C, with a catalytically active homotrimer, at 100 kDa, was found in Bacillus and other Gram positive bacteria. In this report, the ATCases from the Gram negatives, Shewanella putrefaciens and Stenotrophomonas maltophilia were added to class C membership. The enteric bacteria typify class B ATCases at 310 kDa, with a dodecameric structure composed of two catalytic trimers coupled to three regulatory dimers. A key feature of class B ATCases is the dissociability of the holoenzyme into regulatory and catalytic subunits which were enzymatically active. In this report, the ATCase from Pseudomonas indigofera was added to class B ATCases. The largest class, at 480 kDa, class A, contains the fluorescent Pseudomonas including most members of the 16S rRNA homology group I. Two polypeptides are produced from overlapping pyrBC' genes. The former, pyrB, encodes a 34 kDa catalytic polypeptide while pyrC' encodes a 45 kDa dihydroorotase-like polypeptide. Two non active trimers are made from six 34 kDa chains which are cemented …
Date: December 1996
Creator: Linscott, Andrea J. (Andrea Jane)
System: The UNT Digital Library