Interpretation of pre- and post-fracturing well tests in a geothermal reservoir (open access)

Interpretation of pre- and post-fracturing well tests in a geothermal reservoir

Pre- and post-fracturing well tests in TG-2 well drilled next to the Matsukawa field are interpreted for evaluating effects of a massive hydraulic fracturing treatment. The interpreted data include multiple-step rate tests, a two-step rate test, and falloff tests. Pressure behaviors of massive hydraulic fracturing are matched by a simulator of dynamic fracture option. Fracture parting pressures can be evaluated from the multiple-step rate test data. The multiple-step rates during the massive hydraulic fracturing treatment show that multiple fractures have been induced in sequence. Although the pre-fracturing falloff tests are too short, fracture propagation can be evaluated qualitatively from the falloff data. Interpretation of the falloff test immediately after the MHF suggests that extensive fractures have been created by the MHF, which is verified by simulation. The post-fracturing falloff tests show that the fractures created by the MHF have closed to a great degree.
Date: January 26, 1995
Creator: Arihara, Norio; Fukagawa, Hiroshi; Hyodo, Masami & Abbaszadeh, Maghsood
System: The UNT Digital Library
Locating an Active Fault Zone in Coso Geothermal Field by Analyzing Seismic Guided Waves From Microearthquake Data (open access)

Locating an Active Fault Zone in Coso Geothermal Field by Analyzing Seismic Guided Waves From Microearthquake Data

Active fault systems usually provide high-permeability channels for hydrothermal outflow in geothermal fields. Locating such fault systems is of a vital importance to plan geothermal production and injection drilling, since an active fault zone often acts as a fracture-extensive low-velocity wave guide to seismic waves. We have located an active fault zone in the Coso geothermal field, California, by identifying and analyzing a fault-zone trapped Rayleigh-type guided wave from microearthquake data. The wavelet transform is employed to characterize guided-wave's velocity-frequency dispersion, and numerical methods are used to simulate the guided-wave propagation. The modeling calculation suggests that the fault zone is {approx} 200m wide, and has a P wave velocity of 4.80 km/s and a S wave velocity of 3.00 km/s, which is sandwiched between two half spaces with relatively higher velocities (P wave velocity 5.60 km/s, and S wave velocity 3.20 km/s). zones having vertical or nearly vertical dipping fault planes.
Date: January 26, 1995
Creator: Lou, M.; Malin, P. E. & Rial, J. A.
System: The UNT Digital Library
Study of desorption in a vapor dominated reservoir with fractal geometry (open access)

Study of desorption in a vapor dominated reservoir with fractal geometry

This paper is an attempt to model well decline in a vapor dominated reservoir with fractal geometry. The fractal network of fractures is treated as a continuum with characteristic anomalous diffusion of pressure. A numerical solver is used to obtain the solution of the partial differential equation including adsorption in the fractal storage space. The decline of the reservoir is found to obey the empirical hyperbolic type relation when adsorption is not present. Desorption does not change the signature of the flow rate decline but shifts it on the time/flow rate axis. Only three out of six model parameters can be estimated from field data, due to the linear correlation between parameters. An application to real well data from The Geysers field is presented together with the estimated reservoir, fractal space and adsorption parameters. Desorption dominated flow is still a questionable approximation for flow in fractal objects.
Date: January 26, 1995
Creator: Tudor, Monica; Horne, Roland N. & Hewett, Thomas A.
System: The UNT Digital Library
Laboratory measurements on reservoir rocks from The Geysers geothermal field (open access)

Laboratory measurements on reservoir rocks from The Geysers geothermal field

A suite of laboratory measurements have been conducted on Geysers metagraywacke and metashale recovered from a drilled depth of 2599 to 2602 meters in NEGU-17. The tests have been designed to constrain the mechanical and water-storage properties of the matrix material. Various measurements have been made at a variety of pressures and at varying degrees of saturation. Both compressional and shear velocities exhibit relatively little change with effective confining pressure. In all of the samples, water saturation causes an increase in the compressional velocity. In some samples, saturation results in a moderate decrease in shear velocity greater in magnitude than would be expected based on the slight increase in bulk density. It is found that the effect of saturation on the velocities can be quantitatively modeled through a modification of Biot-Gassmann theory to include weakening of the shear modulus with saturation. The decrease is attributed to chemo-mechanical weakening caused by the presence of water. The degree of frame weakening of the shear modulus is variable between samples, and appears correlated with petrographic features of the cores. Two related models are presented through which we can study the importance of saturation effects on field-scale velocity variations. The model results indicate that …
Date: January 26, 1995
Creator: Boitnott, G.N.
System: The UNT Digital Library