Effects of External Electric Fields on Light Transmittance in Isolated Crayfish Nerves (open access)

Effects of External Electric Fields on Light Transmittance in Isolated Crayfish Nerves

Acute effects of a pulsed external electric field (PEEF) at 20 V/cm and a d.c. EEF at 90 V/cm on light transmittance in an isolated compound crayfish nerve was measured. In a third series, the nerve was pre-treated with the Na+ channel blocker tetrodotoxin (TTX). A PEEF produced an irreversible increase in the variation of light transmittance in normal nerves but a reversible increase in TTX treated nerves. This data was statistically insignificant. The d.c. EEFs produced a reversible and statistically significant enhancement of variation in light transmittance in both untreated and TTX-treated nerves. The findings may be due to either (1) an alteration in the ion/fluid flux within the nerve or (2) a physical alteration of protein molecules in the membranes.
Date: December 1995
Creator: Northcutt, Brian S. W.
System: The UNT Digital Library
Pyrimidine Salvage Enzymes in Microorganisms: Labyrinths of Enzymatic Diversity (open access)

Pyrimidine Salvage Enzymes in Microorganisms: Labyrinths of Enzymatic Diversity

Pyrimidine salvage pathways are essential to all cells. They provide a balance of RNA synthesis with the biosynthetic pathway in pyrimidine prototrophs and supply all the pyrimidine requirements in auxotrophs. While the pyrimidine biosynthetic pathway is found in almost all organisms and is nearly identical throughout nature, the salvage pathway often differs from species to species, with aspects of salvage seen in every organism. Thus significant taxonomic value may be ascribed to the salvage pathway. The pyrimidine salvage pathways were studied in 55 microorganisms. Nine different salvage motifs, grouped I-IX, were identified in this study based on the presence of different combinations of the following enzymes: cytidine deaminase (Cdd), cytosine deaminase (Cod), uridine phosphorylase (Udp), uracil phosphoribosyltransferase (Upp), uridine hydrolase (Udh), nucleoside hydrolase (Nuh), uridine/cytidine kinase (Udk), 5'-nucleotidase and CMP kinase (Cmk).
Date: December 1995
Creator: Beck, Debrah A. (Debrah Ann)
System: The UNT Digital Library
Cell-Free Recovery and Isotopic Identification of Cyanide Degrading Enzymes from Pseudomonas Fluorescens (open access)

Cell-Free Recovery and Isotopic Identification of Cyanide Degrading Enzymes from Pseudomonas Fluorescens

Cell-free extracts from Pseudomonas fluorescens NCIMB 11764 catalyzed the degradation of cyanide into products that included C02, formic acid, formamide and ammonia. Cyanide-degrading activity was localized to cytosolic cell fractions and was observed at substrate concentrations as high as 100 mM. Two cyanide degrading activities were identified by: (i) the determination of reaction products stoichiometries, (ii) requirements for NADH and oxygen, and (iii) kinetic analysis. The first activity produced CO2 and NH3 as reaction products, was dependent on oxygen and NADH for activity, and displayed an apparent Km for cyanide of 1.2 mM. The second activity generated formic acid (and NH3) pfus formamide as reaction products, was oxygen independent, and had an apparent Km of 12 mM for cyanide. The first enzymatic activity was identified as cyanide oxygenase whereas the second activity consists of two enzymes, a cyanide nitrilase (dihydratase) and putative cyanide hydratase. In addition to these enzymes, cyanide-grown cells were also induced for formate dehydrogenase (FDH), providing a means of recycling NADH utilized by cyanide oxygenase.
Date: December 1995
Creator: Wang, Chien-Sao
System: The UNT Digital Library
Subcellular Localization of N-acylphosphatidyl-ethanolamine Synthase in Cotyledons of Cotton Seedlings (open access)

Subcellular Localization of N-acylphosphatidyl-ethanolamine Synthase in Cotyledons of Cotton Seedlings

N-acylation of phosphatidylethanolamine (PE) with free fatty acids catalyzed by N-acyl phosphatidylethanolamine (NAPE) synthase was reported in cotyledons of 24-h-old cotton seedlings. Here I report subcellular localization of this enzyme. Differential centrifugation, sucrose density gradient fractionation,aqueous two-phase partitioning and electron microscopy techniques were utilized to elucidate subcellular site(s) of NAPE synthase. Marker enzymes were used to locate organelles in subcellular fractions. Differential centrifugation indicated that NAPE synthase is present in more than one organelle and it is a membrane bound enzyme. Sucrose density gradient fractionations indicated that NAPE synthase is present in membranes derived from endoplasmic reticulum (ER),Golgi and possibly plasma membrane (PM) but not mitochondria, glyoxysomes or plastids. Aqueous two-phase partitioning experiments with cotton and spinach tissues supported these results but Goigi appeared to be the major site of NAPE synthesis. Electron microscopy of subcellular fractions was used to examine isolated fractions to provide visual confirmation of our biochemical results. Collectively, these results indicate that NAPE is synthesized in plant ER, Golgi and possibly PM.
Date: December 1995
Creator: Sriparameswaran, Anuja
System: The UNT Digital Library