Degree Discipline

3 Matching Results

Results open in a new window/tab.

The Stopping Power of Amorphous and Channelled Silicon at All Energies as Computed with the Binary Encounter Approximation (open access)

The Stopping Power of Amorphous and Channelled Silicon at All Energies as Computed with the Binary Encounter Approximation

This thesis utilizes the binary encounter approximation to calculate the stopping power of protons penetrating silicon. The main goal of the research was to make predictions of the stopping power of silicon for low-energy and medium-energy channelled protons, in the hope that this will motivate experiments to test the theory developed below. In attaining this goal, different stopping power theories were compared and the binary encounter approach was applied to random (non-channelled) and high-energy channelled protons in silicon, and these results were compared with experimental data.
Date: December 1994
Creator: Bickel, David, 1970-
System: The UNT Digital Library
Experimental Synchronization of Chaotic Attractors Using Control (open access)

Experimental Synchronization of Chaotic Attractors Using Control

The focus of this thesis is to theoretically and experimentally investigate two new schemes of synchronizing chaotic attractors using chaotically operating diode resonators. The first method, called synchronization using control, is shown for the first time to experimentally synchronize dynamical systems. This method is an economical scheme which can be viably applied to low dimensional dynamical systems. The other, unidirectional coupling, is a straightforward means of synchronization which can be implemented in fast dynamical systems where timing is critical. Techniques developed in this work are of fundamental importance for future problems regarding high dimensional chaotic dynamical systems or arrays of mutually linked chaotically operating elements.
Date: December 1994
Creator: Newell, Timothy C. (Timothy Charles)
System: The UNT Digital Library
Accelerator Mass Spectrometry Studies of Highly Charged Molecular Ions (open access)

Accelerator Mass Spectrometry Studies of Highly Charged Molecular Ions

The existence of singly, doubly, and triply charged diatomic molecular ions was observed by using an Accelerator Mass Spectrometry (AMS) technique. The mean lifetimes of 3 MeV boron diatomic molecular ions were measured. No isotopic effects on the mean lifetimes of boron diatomic molecules were observed for charge state 3+. Also, the mean lifetime of SiF^3+ was measured.
Date: December 1994
Creator: Kim, Yong-Dal
System: The UNT Digital Library