The {alpha}-induced thick-target {gamma}-ray yield from light elements (open access)

The {alpha}-induced thick-target {gamma}-ray yield from light elements

The {alpha}-induced thick-target {gamma}-ray yield from light elements has been measured in the energy range 5.6 MeV {le} E{sub {alpha}} {le} 10 MeV. The {gamma}-ray yield for > 2.1 MeV from thick targets of beryllium, boron nitride, sodium fluoride, magnesium, aluminum and silicon were measured using the {alpha}-particle beam from the Lawrence Berkeley Laboratories 88 in. cyclotron. The elemental yields from this experiment were used to construct the {alpha}-induced direct production {gamma}-ray spectrum from materials in the SNO detector, a large volume ultra-low background neutrino detector located in the Creighton mine near Sudbury, Canada. This background source was an order of magnitude lower than predicted by previous calculations. These measurements are in good agreement with theoretical calculations of this spectrum based on a statistical nuclear model of the reaction, with the gross high energy spectrum structure being reproduced to within a factor of two. Detailed comparison of experimental and theoretical excitation population distribution of several residual nuclei indicate the same level of agreement within experimental uncertainties.
Date: October 1994
Creator: Heaton, R. K.
System: The UNT Digital Library
Anodic oxygen-transfer electrocatalysis at iron-doped lead dioxide electrodes (open access)

Anodic oxygen-transfer electrocatalysis at iron-doped lead dioxide electrodes

The research illustrated in this thesis was performed under the guidance of Professor Dennis C. Johnson beginning in March 1987. Chapter 2 concentrates on the development and electrocatalytic properties of iron-doped {beta}-PbO{sub 2} films on noble-metal substrates. Chapter 3 focuses attention on the preparation and characterization of iron-doped {beta}-PbO{sub 2} films on titanium substrates (Fe-PbO{sub 2}/Ti). Chapter 4 discusses anodic evolution of ozone at Fe-PbO{sub 2}/Ti electrodes. Chapter 5 describes electrochemical incineration of p-benzoquinone (BQ) at Fe-PbO{sub 2}/Ti electrodes. In addition, the Appendix includes another published paper which is a detailed study of {alpha}-PbO{sub 2} films deposited on various types of stainless steel substrates.
Date: October 1, 1994
Creator: Feng, Jianren
System: The UNT Digital Library
Carbon monoxide oxidation over three different states of copper: Development of a model metal oxide catalyst (open access)

Carbon monoxide oxidation over three different states of copper: Development of a model metal oxide catalyst

Carbon monoxide oxidation was performed over the three different oxidation states of copper -- metallic (Cu), copper (I) oxide (Cu{sub 2}O), and copper (II) oxide (CuO) as a test case for developing a model metal oxide catalyst amenable to study by the methods of modern surface science and catalysis. Copper was deposited and oxidized on oxidized supports of aluminum, silicon, molybdenum, tantalum, stainless steel, and iron as well as on graphite. The catalytic activity was found to decrease with increasing oxidation state (Cu > Cu{sub 2}O > CuO) and the activation energy increased with increasing oxidation state (Cu, 9 kcal/mol < Cu{sub 2}O, 14 kcal/mol < CuO, 17 kcal/mol). Reaction mechanisms were determined for the different oxidation states. Lastly, NO reduction by CO was studied. A Cu and CuO catalyst were exposed to an equal mixture of CO and NO at 300--350 C to observe the production of N{sub 2} and CO{sub 2}. At the end of each reaction, the catalyst was found to be Cu{sub 2}O. There is a need to study the kinetics of this reaction over the different oxidation states of copper.
Date: October 1, 1994
Creator: Jernigan, G. G.
System: The UNT Digital Library
Liquid chromatographic method for determination of water in soils and the optimization of anion separations by capillary zone electrophoresis (open access)

Liquid chromatographic method for determination of water in soils and the optimization of anion separations by capillary zone electrophoresis

A liquid chromatographic method for the determination of water in soil or clay samples is presented. In a separate study, the optimization of electrophoretic separation of alkylated phenolate ions was optimized by varying the pH and acetonitrile concentration of the buffer solutions.
Date: October 1, 1994
Creator: Benz, N.
System: The UNT Digital Library
Thermal modeling of the lithium/polymer battery (open access)

Thermal modeling of the lithium/polymer battery

Research in the area of advanced batteries for electric-vehicle applications has increased steadily since the 1990 zero-emission-vehicle mandate of the California Air Resources Board. Due to their design flexibility and potentially high energy and power densities, lithium/polymer batteries are an emerging technology for electric-vehicle applications. Thermal modeling of lithium/polymer batteries is particularly important because the transport properties of the system depend exponentially on temperature. Two models have been presented for assessment of the thermal behavior of lithium/polymer batteries. The one-cell model predicts the cell potential, the concentration profiles, and the heat-generation rate during discharge. The cell-stack model predicts temperature profiles and heat transfer limitations of the battery. Due to the variation of ionic conductivity and salt diffusion coefficient with temperature, the performance of the lithium/polymer battery is greatly affected by temperature. Because of this variation, it is important to optimize the cell operating temperature and design a thermal management system for the battery. Since the thermal conductivity of the polymer electrolyte is very low, heat is not easily conducted in the direction perpendicular to cell layers. Temperature profiles in the cells are not as significant as expected because heat-generation rates in warmer areas of the cell stack are lower than …
Date: October 1, 1994
Creator: Pals, C. R.
System: The UNT Digital Library
Toward resolving model-measurement discrepancies of radon entry into houses (open access)

Toward resolving model-measurement discrepancies of radon entry into houses

Analysis of the literature indicated that radon transport models significantly and consistently underpredict the advective entry into houses of soil-gas borne radon. Advective entry is the dominant mechanism resulting in high concentrations of radon indoors. The author investigated the source of the model-measurement discrepancy via carefully controlled field experiments conducted at an experimental basement located in natural soil in Ben Lomond, California. Early experiments at the structure confirmed the existence and magnitude of the model-measurement discrepancy, ensuring that it was not merely an artifact of inherently complex and poorly understood field sites. The measured soil-gas entry rate during structure depressurization was found to be an order of magnitude larger than predicted by a current three-dimensional numerical model of radon transport. The exact magnitude of the discrepancy depends on whether the arithmetic or geometric mean of the small-scale measurements of permeability is used to estimate the effective permeability of the soil. This factor is a critical empirical input to the model and was determined for the Ben Lomond site in the typical fashion using single-probe static depressurization measurements at multiple locations. The remainder of the dissertation research tests a hypothesis to explain the observed discrepancy: that soil permeability assessed using relatively …
Date: October 1, 1994
Creator: Garbesi, K.
System: The UNT Digital Library