Degree Discipline

Protein Kinase C Activation in Hyperglycemic Bovine Lens Epithelial Cells (open access)

Protein Kinase C Activation in Hyperglycemic Bovine Lens Epithelial Cells

This study demonstrates the presence of protein kinase C activity in both cytosolic and membrane fractions of bovine lens epithelial cells in culture. Protein kinase C activity is similar in normal and hyperglycemic cells. Furthermore, the ability of the enzyme to translocate from the cytosol to the membrane following phorbol ester treatment is unimpeded by hyperglycemic conditions. Moreover, protein kinase C activation had no effect on myoinositol uptake either in normal cells or in cells exposed to hyperglycemic conditions.
Date: December 1993
Creator: Fan, Wen-Lin
System: The UNT Digital Library
Modification of Cardiac Membrane Gsα by an Endogenous Arginine-Specific Mono-Adp-Ribosyltransferase (open access)

Modification of Cardiac Membrane Gsα by an Endogenous Arginine-Specific Mono-Adp-Ribosyltransferase

The mechanism by which nicotinamide adenine dinucleotide (NAD) stimulates the activity of adenylate cyclase (AC) in canine plasma membrane has been studied. Using [3 2P]-NAD, the activation by NAD was correlated with the radiolabeling of the stimulatory guanosine triphosphate (GTP) binding protein Gsa. Further characterization demonstrated that the modification occurred only in the presence of G-protein activators and that arginine residue(s) were modified by ADP-ribose by the action of a mono-ADP-ribosyltransferase. Inhibitors of the transferase blocked both the modification of Gsa and the activation of AC. Collectively, these studies suggest that ADP-ribosylation of Gsa by an endogenous mono-ADP-ribosyltransferase may regulate cardiac AC.
Date: December 1993
Creator: Coyle, Donna L. (Donna Lynn)
System: The UNT Digital Library