2 Matching Results

Results open in a new window/tab.

Chemically Assisted in Situ Recovery of Oil Shale. [Quarterly] Report, April 1, 1993--June 30, 1993 (open access)

Chemically Assisted in Situ Recovery of Oil Shale. [Quarterly] Report, April 1, 1993--June 30, 1993

The objective of this work is to investigate, in the laboratory, the parameters associated with a chemically assisted in situ recovery procedure, using hydrogen chloride (HCI), carbon dioxide (CO{sub 2}), and steam (H{sub 2}0), to obtain data useful to develop a process more economic than existing processes and to report all findings. The technical progress of the project is reported. The project status is that the progress is being made towards being able to run meaningful experiments.
Date: September 1, 1993
Creator: Ramirez, W. F.
System: The UNT Digital Library
Direct Methane Conversion to Methanol. Annual Report, October 1, 1992--September 30, 1993 (open access)

Direct Methane Conversion to Methanol. Annual Report, October 1, 1992--September 30, 1993

We proposed to demonstrate the effectiveness of a catalytic membrane reactor (a ceramic membrane combined with a catalyst) to selectively produce methanol by partial oxidation of methane. Methanol is used as a chemical feedstock, gasoline additive, and turbine fuel. Methane partial oxidation using a catalytic membrane reactor has been determined as one of the promising approaches for methanol synthesis from methane. In the original proposal, the membrane was used to selectively remove methanol from the reaction zone before carbon oxides form, thus increasing the methanol yield. Methanol synthesis and separation in one step would also make methane more valuable for producing chemicals and fuels. The cooling tube inserted inside the membrane reactor has created a low temperature zone that rapidly quenches the product stream. This system has proved effective for increasing methanol selectivity during CH{sub 4} oxidation. The membranes broke during experiments, however, apparently because of the large radial thermal gradient and axial thermal expansion difference. Our efforts concentrated on improving the membrane lifetime by modifying this non-isothermal membrane reactor.
Date: October 1, 1993
Creator: Noble, R. D. & Falconer, J. L.
System: The UNT Digital Library