Degree Discipline

6 Matching Results

Results open in a new window/tab.

Kinetic and Chemical Mechanism of Pyrophosphate-Dependent Phosphofructokinase (open access)

Kinetic and Chemical Mechanism of Pyrophosphate-Dependent Phosphofructokinase

Data obtained from isotope exchange at equilibrium, exchange of inorganic phosphate against forward reaction flux, and positional isotope exchange of 18O from the (βγ-bridge position of pyrophosphate to a (β-nonbridge position all indicate that the pyrophosphate-dependent phosphofructokinase from Propionibacterium freudenreichii has a rapid equilibrium random kinetic mechanism. All exchange reactions are strongly inhibited at high concentrations of the fructose 6-phosphate/Pi and MgPPi/Pi substrate-product pairs and weakly inhibited at high concentrations of the MgPPi/fructose 1,6-bisphosphate pair suggesting three dead-end complexes, E:F6P:Pi, E:MgPPi:Pi, and E:FBP:MgPPi. Neither back-exchange by [32p] nor positional isotope exchange of 18O-bridge-labeled pyrophosphate was observed under any conditions, suggesting that either the chemical interconversion step or a step prior to it limits the overall rate of the reaction. Reduction of the pyridoxal 5'-phosphate-inactivated enzyme with NaB[3H]4 indicates that about 7 lysines are modified in free enzyme and fructose 1,6-bisphosphate protects 2 of these from modification. The pH dependence of the enzyme-reactant dissociation constants suggests that the phosphates of fructose 6-phosphate, fructose 1,6-bisphosphate, inorganic phosphate, and Mg-pyrophosphate must be completely ionized and that lysines are present in the vicinity of the 1- and 6-phosphates of the sugar phosphate and bisphosphates probably directly coordinated to these phosphates. The pH dependence of …
Date: December 1988
Creator: Cho, Yong Kweon
System: The UNT Digital Library
Alternate Substrates and Isotope Effects as a Probe of the Malic Enzyme Reaction (open access)

Alternate Substrates and Isotope Effects as a Probe of the Malic Enzyme Reaction

Dissociation constants for alternate dirmcleotide substrates and competitive inhibitors suggest that the dinucleotide binding site of the Ascaris suum NAD-malic enzyme is hydrophobic in the vicinity of the nicotinamide ring. Changes in the divalent metal ion activator from Mg^2+ to Mn^2+ or Cd^2+ results in a decrease in the dinucleotide affinity and an increase in the affinity for malate. Primary deuterium and 13-C isotope effects obtained with the different metal ions suggest either a change in the transition state structure for the hydride transfer or decarboxylation steps or both. Deuterium isotope effects are finite whether reactants are maintained at saturating or limiting concentrations with all the metal ions and dinucleotide substrates used. With Cd^2+ as the divalent metal ion, inactivation of the enzyme occurs whether enzyme alone is present or is turning over. Upon inactivation only Cd^2+ ions are bound to the enzyme which becomes denatured. Modification of the enzyme to give an SCN-enzyme decreases the ability of Cd^2+ to cause inactivation. The modified enzyme generally exhibits increases in K_NAD and K_i_metai and decreases in V_max as the metal size increases from Mg^2+ to Mn^2+ or Cd^2+, indicative of crowding in the site. In all cases, affinity for malate greatly …
Date: August 1988
Creator: Gavva, Sandhya Reddy
System: The UNT Digital Library
Mechanism of the Adenosine 3',5'-Monophosphate Dependent Protein Kinase (open access)

Mechanism of the Adenosine 3',5'-Monophosphate Dependent Protein Kinase

Isotope partitioning experiments were carried out with the adenosine 3',5'-monophosphate-dependent protein kinase catalytic subunit (cAPK) from bovine hearts to obtain information on the order of addition of reactants and the relative rates of reactant release from enzyme compared to the catalytic step(s). A value of 100% trapping for both ErMgATP-[γ-32P] and E:3H-Serpeptide at low Mgf indicates that MgATP and Serpeptide dissociate slowly from the enzyme compared to the catalytic step(s). The K_Serpeptide for MgATP trapping is 17 μM, while the K_MgATP for Serpeptide trapping is 0.58 mM. The latter data indicate that the off-rate for MgATP from the E:MgATP complex is 14 s^-1 while that for Serpeptide from the E: Serpeptide complex is 64 s^-1. At high Mg^, 100% trapping is obtained for the E:MgATP-[γ-32P] complex but only 40% is obtained for the E:Serpeptide complex. Thus, the off-rate for Serpeptide from the E:MgATP:Serpeptide complex becomes significant at high Mg_f. Data suggest a random mechanism in which MgATP is sticky. The V for the cAPK reaction increases 1.5-1.7 fold in the presence of the R_II in the presence of saturating cAMP at a stoichiometry of R:C of 1:1. No change is obtained with the type-I complex under these conditions. At higher …
Date: May 1988
Creator: Kong, Cheng-Te
System: The UNT Digital Library
In Vitro Modulation of Rat Liver Glyoxalase II Activity (open access)

In Vitro Modulation of Rat Liver Glyoxalase II Activity

Glyoxylase II (Glo II, E.C. 3.1.2.6) catalyzes the hydrolysis of S-D-Lactoylglutathione (SLG) to D-Lactate and glutathione. This is the rate limiting step in the conversion of methylglyoxal to D-Lactate. The purpose of the present study was to determine whether or not a relationship exists between some naturally occuring metabolites and in vivo modulation of Glo II. We have observed a non-competitive inhibition (~ 45%) of Glo II in crude preparation of rat liver by GTP (0.3 mM). A factor (apparently protein),devoid of Glo II,when reconstituted with the purified Glo II, enhanced Glo II activity. This coordinate activation and inhibition of Glo II suggest a mechanism whereby SLG levels can be modulated in vivo.
Date: August 1988
Creator: Mbamalu, Godwin E.
System: The UNT Digital Library
Purification and Characterization of a Differentiation Factor From Rat Lung Conditioned Medium (open access)

Purification and Characterization of a Differentiation Factor From Rat Lung Conditioned Medium

A Differentiation Factor (DF) was purified from rat lung conditioned medium by a four-steps procedure. The DF has a molecular weight of 27000, and an isoelectric point of 4.70. Although DF is stable up to 60°C, it is sensitive to digestion by trypsin, chymotrypsin and subtilisin. DF forms granulocyte colonies in soft agar. Studies using anti-NRK CSF antibody demonstrated that DF is distinct from GM-CSF.
Date: May 1988
Creator: Ansari, Naser A. (Naser Awni)
System: The UNT Digital Library
Studies on Poly(ADP-ribose) Metabolism and Chromatin Structure (open access)

Studies on Poly(ADP-ribose) Metabolism and Chromatin Structure

In these studies, a procedure which allowed the in vivo labeling and detection of poly(ADP-ribose) was combined with nuclear fractionation techniques to analyze the nuclear distribution of ADP-ribose polymers. The results from these studies suggest the occurrence of poly(ADP-ribose) metabolism in two compartments of chromatin; one that is nuclear matrix-associated and one that is not. The biological significance of this compartmentalization is conceptualization in a model. This model postulates that, under some physiological conditions, poly(ADP-ribose) metabolism accomplishes the reversible targeting of specific regions of chromatin to the nuclear matrix domain by modulating DNA-protein and or protein-protein interactions.
Date: August 1988
Creator: Cárdenas-Corona, María E. (María Elena)
System: The UNT Digital Library