7 Matching Results

Results open in a new window/tab.

Cryogenic system design for a compact tokamak reactor (open access)

Cryogenic system design for a compact tokamak reactor

The International Tokamak Engineering Reactor (ITER) is a program presently underway to design a next-generation tokamak reactor. The cryogenic system for this reactor must meet unusual and new requirements. Unusually high heat loads (100 kW at 4.5 K) must be handled because neutron shielding has been limited to save space in the reactor core. Also, large variations in the cryogenics loads occur over short periods of time because of the pulsed nature of some of the operating scenarios. This paper describes a workable cryogenic system design for a compact tokamak reactor such as ITER. A design analysis is presented dealing with a system that handles transient loads, coil quenches, reactor cool-down and the effect of variations in helium-supply temperatures on the cryogenic stability of the coils. 5 refs., 4 figs., 1 tab.
Date: October 28, 1988
Creator: Slack, D. S.; Kerns, J. A. & Miller, J. R.
System: The UNT Digital Library
A multimegawatt space power source radiator design (open access)

A multimegawatt space power source radiator design

The multimegawatt space power sources (MMSPS) proposed for deployment in the late 1990s to meet mission burst power requirements, require an increase by four orders of magnitude in the power rating of equipment currently used in space. Prenger and Sullivan (1982) describe various radiator concepts proposed for such applications. They range from the innovative liquid droplet radiator (Mattick and Hertzberg 1981) to the more conventional heat pipe concept (Girrens 1982). The present paper deals with the design of the radiator for one such system, characterized by both high temperature and high pressure. It provides an estimate of the size, mass, and problems of orbiting such a radiator, based on the assumption that the next generation of heavy launch vehicle with 120-tonne carrying capacity, and 4000-m/sup 3/ cargo volume, will be available for putting hardware into orbit.
Date: January 28, 1988
Creator: Jedruch, J.
System: The UNT Digital Library
[Newspaper Article: Galvestonian recalls days as Harvey girl] (open access)

[Newspaper Article: Galvestonian recalls days as Harvey girl]

Newspaper article from The Galveston Daily News detailing history and information about Harvey Houses as well as Harvey girls, including an interview with Madge Saenz.
Date: February 28, 1988
Creator: Darst, Maury
System: The Portal to Texas History
Numerical simulation of turbulent mixing in shock-tube experiments (open access)

Numerical simulation of turbulent mixing in shock-tube experiments

We have carried out a number of 2D numerical simulations on an ALE code for shock-tube experiments in which a shock crosses one or more contact discontinuities and, after traveling through a homogeneous medium, reflects off a rigid wall at the end of the shock-tube and re-crosses the contact discontinuity. We have considered two-fluid and three-fluid experiments: the first fluid, which carries the original shock, is air; the other fluids are helium, freon, SF/sub 6/, or air again. Helium is lighter than air, while freon and SF/sub 6/ are heavier than air. The interface(s) between the fluids serve as contact discontinuities and are subjected to the original shock, the re-shock, and subsequent rarefactions/compressions. 9 refs., 6 figs.
Date: November 28, 1988
Creator: Mikaelian, K.O.
System: The UNT Digital Library
Observable gravitational and electromagnetic orbits and trajectories in discrete physics (open access)

Observable gravitational and electromagnetic orbits and trajectories in discrete physics

Our discrete and finite version of relativistic quantum mechanics provides an elementary particle physics consistent with the standard model of quarks and leptons. Our recent relativistic calculation of the bound state spectrum of hydrogen has allowed us to make a combinatorial correction to the first order estimate of 1/..cap alpha.. = /Dirac h/c/e/sup 2/ = 137 derived from the combinatorial hierarchy and achieve agreement with experiment up to terms of order ..cap alpha../sup 3/. The same theory requires that to first order /Dirac h/c/Gm/sub p//sup 2/ = 2/sup 127/ + 136 approx. = 1.7 /times/ 10/sup 38/. Using the emission and absorption of spin 1 photons and spin 2 gravitons in this framework, we try to show that we can meet the three additional tests of general relativity---solar red shift, solar bending of light, and precession of the perihelion of Mercury. We predict that a macroscopic electromagnetic orbit would have four times the Sommerfeld precession for basically the same reason that Mercury has six times the Sommerfeld precession. 20 refs.
Date: November 28, 1988
Creator: Noyes, H. P. & McGoveran, D. O.
System: The UNT Digital Library
Progress toward high-gain laser fusion (open access)

Progress toward high-gain laser fusion

A 1985-1986 Review of the US inertial confinement fusion program by the National Academy of Sciences concluded that five more years might be required to obtain enough data to determine the future course of the program. Since then, data from the Nova laser and from the Halite/Centurion program have resolved most of the outstanding problems identified by the NAS review. In particular, we now believe that we can produce a sufficiently uniform target; that we can keep the energy content in hot electrons and high-energy photons low enough (/approximately/1--10% of drive energy, depending on target design) and achieve enough pulse-shaping accuracy (/approximately/10%, with a dynamic range of 100:1) to keep the fuel on a near-Fermi-degenerate adiabat; that we can produce an /approximately/100-Mbar pressure pulse of sufficient uniformity (/approximately/1%), and can we control hydrodynamic instabilities so that the mix of the pusher into the hot spot is low enough to permit marginal ignition. These results are sufficiently encouraging that the US Department of Energy is planning to complete a 10-MJ laboratory microfusion facility to demonstrate high-gain ICF in the laboratory within a decade. 22 refs., 1 fig.
Date: September 28, 1988
Creator: Storm, E.
System: The UNT Digital Library
State-of-the-art Monte Carlo 1988 (open access)

State-of-the-art Monte Carlo 1988

Particle transport calculations in highly dimensional and physically complex geometries, such as detector calibration, radiation shielding, space reactors, and oil-well logging, generally require Monte Carlo transport techniques. Monte Carlo particle transport can be performed on a variety of computers ranging from APOLLOs to VAXs. Some of the hardware and software developments, which now permit Monte Carlo methods to be routinely used, are reviewed in this paper. The development of inexpensive, large, fast computer memory, coupled with fast central processing units, permits Monte Carlo calculations to be performed on workstations, minicomputers, and supercomputers. The Monte Carlo renaissance is further aided by innovations in computer architecture and software development. Advances in vectorization and parallelization architecture have resulted in the development of new algorithms which have greatly reduced processing times. Finally, the renewed interest in Monte Carlo has spawned new variance reduction techniques which are being implemented in large computer codes. 45 refs.
Date: June 28, 1988
Creator: Soran, P. D.
System: The UNT Digital Library