Degree Department

Degree Level

Conformation-Activity Studies of Pyrethroid Alcohols (open access)

Conformation-Activity Studies of Pyrethroid Alcohols

The synthesis and insecticidal activity of certain alcohols (hydroxymethyldibenzofurans, hydroxymethyldibenzothiophenes and some of their ⍺-cyano derivatives), esterified with trans-chrysanthemic acid, were investigated. The preparation of these planar alcohol moieties was undertaken to study conformation-activity effects in insecticides of the pyrethroid type. The synthesis of final ester products employed two methods. One was the direct condensation of the appropriate alcohol with chrysanthemic acid chloride in the presence of pyridine. The other involved the in situ formation of the cyanohydrin from the appropriate aldehyde and subsequent condensation with chrysanthemic acid chloride in the presence of a phase transfer reagent. Insecticidal activity is to be tested at rates of 0.001, 0.01, 0.1, 10, 100, and 1000 ppm. Fenvalerate is used as the standard against Diabrotica undecimpuntata (spotted cucumber beetles).
Date: August 1984
Creator: Tu, Huai-Tsu
System: The UNT Digital Library
Syntheses of a New C₂₂H₂₈ Cage Hydrocarbon System and 2,2- Tetramethylene-1 /4-Dibromobutane (open access)

Syntheses of a New C₂₂H₂₈ Cage Hydrocarbon System and 2,2- Tetramethylene-1 /4-Dibromobutane

(1). An improved method for synthesizing bicyclo (2,2,1) hepta-2,5-diene-7-spiro-1'-cyclopentane (5) has been developed. Thermal reaction of compound (5) with neat iron pentacarbonyl under nitrogen atmosphere affords the corresponding cage dimer (6). Some aspects of the syntheses, spectra, and chemistry of compound (5) and (6) are discussed. (2). A structure isomer of decamethyldodecahedrane (C₃₀H₄₀), molecule (11), is expected to be synthesized via thermal reaction of iron carbonyl complexes with compound (10). An intermediate in this synthesis, 2,2- tetramethylene-1,4-dibromobutane (9) was efficiently synthesized starting from cyclopentanone. Some aspects of the syntheses, spectra, and chemistry of compound (1) to (9) will be discussed.
Date: December 1984
Creator: Wu, An-hsiang
System: The UNT Digital Library
Synthesis of trimethylsilyl-substituted pentacyclo(5.4.0.0²,⁶.0³,¹º.0⁵,⁹)undecanes and chloro-substituted pentacyclo(5.4.0.0²,⁶.0³,¹º.0⁵,⁹)undecane (open access)

Synthesis of trimethylsilyl-substituted pentacyclo(5.4.0.0²,⁶.0³,¹º.0⁵,⁹)undecanes and chloro-substituted pentacyclo(5.4.0.0²,⁶.0³,¹º.0⁵,⁹)undecane

As part of a continuing study of the synthesis and chemistry of new, substituted pentacyclo(5.4.0.0²,⁶.0³,¹º.0⁵,⁹)undecanes, the following compounds have been synthesized: 1: X=O, Y=SiMe_3; 2: X=CH_2, Y=SiMe_3; 3: X=O, Y=Cl; 6: X=OAc, Y=H; 8: X=OC(O)Ph, Y=H; 9: X=OSO_2Ph, Y=H; 11: X=OH, Y=H; 12: X=OMe, Y=H; 14: X=CHSiMe_3, Y=SiMe_3; 15: X=OH, Y=Cl; 16: X=OAc, Y=Cl; 17: X=OMe, Y=Cl. An important objective of this work is to prepare new polycyclic cage compounds which can be utilized as intermediates for the synthesis of new, substituted tricyclopentanoid natural products (triquinanes) and related systems. Compounds 1-4 were identified as target molecules in this connection.
Date: August 1984
Creator: Huang, Chunmin
System: The UNT Digital Library