Theory and tests of two-phase turbines (open access)

Theory and tests of two-phase turbines

Two-phase turbines open the possibility of new types of power cycles operating with extremely wet mixtures of steam and water, organic fluids, or immiscible liquids and gases. Possible applications are geothermal power, waste-heat recovery, refrigerant expansion, solar conversion, transportation turbine engines, and engine bottoming cycles. A theoretical model for two-phase impulse turbines was developed. Apparatus was constructed for testing one- and two-stage turbines (using speed decrease from stage to stage). Turbines were tested with water-and-nitrogen mixtures and Refrigerant 22. Nozzle efficiencies were 0.78 (measured) and 0.72 (theoretical) for water-and-nitrogen mixtures at a water/nitrogen mixture ratio of 68, by mass; and 0.89 (measured) and 0.84 (theoretical) for Refrigerant 22 expanding from 0.02 quality to 0.28 quality. Blade efficiencies (shaft power before windage and bearing loss divided by nozzle jet power) were 0.63 (measured) and 0.71 (theoretical) for water-and-nitrogen mixtures and 0.62 (measured) and 0.63 (theoretical) for Refrigerant 22 with a single-stage turbine, and 0.70 (measured) and 0.85 (theoretical) for water-and-nitrogen mixtures with a two-stage turbine.
Date: March 15, 1982
Creator: Elliot, D.G.
Object Type: Report
System: The UNT Digital Library
Helical Screw Expander Evaluation Project. Final report (open access)

Helical Screw Expander Evaluation Project. Final report

A functional 1-MW geothermal electric power plant that featured a helical screw expander was produced and then tested in Utah in 1978 to 1979 with a demonstrated average performance of approximately 45% machine efficiency over a wide range of test conditions in noncondensing operation on two-phase geothermal fluids. The Project also produced a computer-equipped data system, an instrumentation and control van, and a 1000-kW variable load bank, all integrated into a test array designed for operation at a variety of remote test sites. Additional testing was performed in Mexico in 1980 under a cooperative test program using the same test array, and machine efficiency was measured at 62% maximum with the rotors partially coated with scale, compared with approximately 54% maximum in Utah with uncoated rotors, confirming the importance of scale deposits within the machine on performance. Data are presented for the Utah testing and for the noncondensing phases of the testing in Mexico. Test time logged was 437 hours during the Utah tests and 1101 hours during the Mexico tests.
Date: March 1, 1982
Creator: McKay, R.
Object Type: Report
System: The UNT Digital Library
Multiple Spacecraft Observations of Interplanetary Shocks: Characteristics of the Upstream Ulf Turbulence (open access)

Multiple Spacecraft Observations of Interplanetary Shocks: Characteristics of the Upstream Ulf Turbulence

All interplanetary shocks observed by ISEE-3 and either ISEE-1 or ISEE-2 or both in 1978 and 1979 are examined for evidence of upstream waves. In order to characterize the properties of these shocks it is necessary to determine accurate shock normals. We invert an overdetermined set of equations to obtain shock normals, velocities and error estimates for all these shocks. Tests of the method indicate it is quite reliable. Using these normals we then calculate the Mach number and angle between the interplanetary magnetic field and the shock normal for each shock. These parameters allow us to separate the upstream waves into two classes: whistler-mode precursors which occur at low Mach numbers and upstream turbulence whose amplitude at Mach numbers greater than 1.5 is controlled by the angle of the field to the shock normal. The former waves are right-hand circularly polarized and quite monochromatic. The latter waves are more linearly polarized and have a broadband featureless spectrum.
Date: 1982
Creator: Russell, C. T.; Smith, E. J.; Tsurutani, B. T.; Gosling, J. T. & Bame, S. J.
Object Type: Report
System: The UNT Digital Library
Plasma properties of driver gas following interplanetary shocks observed by ISEE-3 (open access)

Plasma properties of driver gas following interplanetary shocks observed by ISEE-3

Plasma fluid parameters calculated from solar wind and magnetic field data obtained on ISEE 3 were studied to determine the characteristic properties of driver gas following interplanetary shocks. Of 54 shocks observed from August 1978 to February 1980, 9 contained a well defined driver gas that was clearly identifiable by a discontinuous decrease in the average proton temperature across a tangential discontinuity. While helium enhancements were present in all of 9 of these events, only about half of them contained simultaneous changes in the two quantities. Often the He/H ratio changed over a period of minutes. Simultaneous with the drop in proton temperature the helium and electron temperature decreased abruptly. In some cases the proton temperature depression was accompanied by a moderate increase in magnetic field magnitude with an unusually low variance and by an increase in the ratio of parallel to perpendicular temperature. The drive gas usually displayed a bi-directional flow of suprathermal solar wind electrons at higher energies (>137 eV).
Date: January 1, 1982
Creator: Zwickl, R. D.; Asbridge, J. R.; Bame, S. J.; Feldman, W. C.; Gosling, J. T. & Smith, E. J.
Object Type: Article
System: The UNT Digital Library