2 Matching Results

Results open in a new window/tab.

Ocean energy systems. Quarterly report, October-December 1982 (open access)

Ocean energy systems. Quarterly report, October-December 1982

Research progress is reported on developing Ocean Thermal Energy Conversion (OTEC) systems that will provide synthetic fuels (e.g., methanol), energy-intensive products such as ammonia (for fertilizers and chemicals), and aluminum. The work also includes assessment and design concepts for hybrid plants, such as geothermal-OTEC (GEOTEC) plants. Another effort that began in the spring of 1982 is a technical advisory role to DOE with respect to their management of the conceptual design activity of the two industry teams that are designing offshore OTEC pilot plants that could deliver power to Oahu, Hawaii. In addition, a program is underway in which tests of a different kind of ocean-energy device, a turbine that is air-driven as a result of wave action in a chamber, are being planned. This Quarterly Report summarizes the work on the various tasks as of 31 December 1982.
Date: December 1, 1982
Creator: unknown
System: The UNT Digital Library
Solar wind iron abundance variations at solar wind speeds > 600 km s/sup -1/, 1972 to 1976 (open access)

Solar wind iron abundance variations at solar wind speeds > 600 km s/sup -1/, 1972 to 1976

We have analyzed the Fe/H ratios in the peaks of high speed streams (HSS) during the decline of Solar Cycle 20 and the following minimum (October 1972 to December 1976). We utilized the response of the 50 to 200 keV ion channel of the APL/JHU energetic particle experiment (EPE) onIMP-7 and 8 to solar wind iron ions at high solar wind speeds (V greater than or equal to 600 km sec/sup -1/), and compared our Fe measurements with solar wind H and He parameters from the Los Alamos National Laboratory (LANL) instruments on the same spacecraft. In general, the Fe distribution parameters (bulk velocity, flow direction, temperature) are found to be similar to the LANL He parameters. Although the average Fe/H ration in many steady HSS peaks agrees within observational uncertainties with the nominal coronal ratio of 4.7 x 10/sup -5/, abundance variations of a factor of up to 6 are obtained across a given coronal-hole associated HSS. There are, as well, factor of 2 variations between stream-averaged abundances for recurent HSS emanating from different coronal holes occurring on the sun on the same solar rotation. flare-related solar wind streams sometimes show Fe/H ratios enhanced by factors of 4 to …
Date: January 1, 1982
Creator: Mitchell, D. G.; Roelof, E. C. & Bame, S. J.
System: The UNT Digital Library