Serial/Series Title

Fission gas release from oxide fuels at high burnups (open access)

Fission gas release from oxide fuels at high burnups

The steady state gas release, swelling and densification model previously developed for oxide fuels has been modified to accommodate the slow transients in temperature, temperature gradient, fission rate and pressure that are encountered in normal reactor operation. The gas release predictions made by the model were then compared to gas release data on LMFBR-EBRII fuels obtained by Dutt and Baker and reported by Meyer, Beyer, and Voglewede. Good agreement between the model and the data was found. A comparison between the model and three other sets of gas release data is also shown, again with good agreement.
Date: February 1, 1981
Creator: Dollins, C. C.
System: The UNT Digital Library
Swelling and gas release in oxide fuels during fast transients (open access)

Swelling and gas release in oxide fuels during fast transients

The previously reported swelling and gas release model for oxide fuels has been modified to predict fission gas bahavior during fast temperature transients. Under steady state or slowly varying conditions it has been assumed in the previous model that the pressure caused by the fission gas within the gas bubbles is in equilibrium with the surface tension of the bubbles. During a fast transient, however, net vacancy migration to the bubbles may be insufficient to maintain this equilibrium. In order to ascertain the net vacancy flow, it is necessary to model the point defect behaviour in the fuel. This model is reported. Knowing the net flow of vacancies to the bubble, the bubble size, the diffusivity can be determined and the long range migration of the gas out of the fuel can be calculated. The model has also been modified to allow release of all the gas on the grain boundaries during a fast temperature transient.
Date: February 1, 1981
Creator: Dollins, C. C.
System: The UNT Digital Library