12 Matching Results

Results open in a new window/tab.

Energy Programs at the Johns Hopkins University Applied Physics Laboratory, Quarterly Report, October-December 1980 (open access)

Energy Programs at the Johns Hopkins University Applied Physics Laboratory, Quarterly Report, October-December 1980

The Johns Hopkins University Applied Physics Laboratory is engaged in developing energy resources, utilization concepts, and monitoring and storage methods. This Quarterly Report summarizes the work on the various tasks as of 31 December 1980. The Energy Quarterly Report is divided into five sections. The first, Geothermal Energy Development Planning and Technical Assistance, supported by the Department of Energy/Division of Geothermal Energy (DOE/DGE), contains reports on the progress of geothermal-related tasks on which effort was concentrated during the quarter. The second section, Operational Research, Hydroelectric Power Development, supported by the Department of Energy/Resource Applications (DOE/RA), contains a report on institutional problems for small-scale hydroelectric power development in the southeastern states and a list of documents published by APL in the hydroelectric program and in the geothermal program, above. The third section, Seismotectonic Investigations, contains an article on work on the geologic structure of the Danbury Quadrangle that is supported by the Reactor Safety Research Division of the Nuclear Regulatory Commission (NRC) and an in-house supported study on a new method for assessing earthquakes in intraplate regions. The fourth section, Energy Conversion and Storage Techniques, contains four articles. The first is an evaluation of the Einstein refrigerator, supported by independent IR …
Date: December 1, 1980
Creator: unknown
System: The UNT Digital Library
Fact sheets relating to use of geothermal energy in the United States (open access)

Fact sheets relating to use of geothermal energy in the United States

A compilation of data relating to geothermal energy in each of the 50 states is presented. The data are summarized on one page for each state. All summary data sheets use a common format. Following the summary data sheet there are additional data on the geology of each state pertaining to possible hydrothermal/geothermal resources. Also there is a list of some of the reports available pertaining to the state and state energy contacts. The intent of these documents is to present in a concise form reference data for planning by the Department of Energy.
Date: December 1, 1980
Creator: unknown
System: The UNT Digital Library
Energy Programs at the Johns Hopkins University Applied Physics Laboratory, Quarterly Report, July-September 1980 (open access)

Energy Programs at the Johns Hopkins University Applied Physics Laboratory, Quarterly Report, July-September 1980

The Johns Hopkins University Applied Physics Laboratory, under contracts with several agencies of the federal government, is engaged in developing energy resources, utilization concepts, and monitoring and storage methods. This Quarterly Report summarizes the work on the various tasks as of 31 September 1980. The Energy Quarterly Report is divided into four sections. The first, Geothermal Energy Development Planning and Technical Assistance, supported by the Department of Energy/Division of Geothermal Energy (DOE/DGE), contains reports on the progress of geothermal-related tasks on which effort was concentrated during the quarter. The second section, Operational Research, Hydroelectric Power Development, supported by the Department of Energy/Resource Applications (DOE/RA), contains reports on small-scale hydroelectric investigations in the southeastern states. The third section, Seismotectonic Investigations, supported by the Reactor Safety Research Division of the Nuclear Regulatory Commission (NRC), reports on neotectonic investigations of the Manhattan Prong. The fourth section, Energy Conversion and Storage Techniques, contains three articles. The first is an evaluation of the Einstein refrigerator, supported by independent IR&D funds. The second concerns OTEC pilot plant performance calculations, supported by the Department of Energy/Division of Central Solar Technology (DOE/CST). The third, describing a study of landfill methane recovery, is supported by the National Park Service.
Date: September 1, 1980
Creator: unknown
System: The UNT Digital Library
Vacuum deposited polycrystalline silicon films for solar cell applications. Quarterly report, 1 April-30 June 1980 (open access)

Vacuum deposited polycrystalline silicon films for solar cell applications. Quarterly report, 1 April-30 June 1980

Polycrystalline p-type films were vacuum deposited onto TiB/sub 2/ coated alumina and sapphire substrates. Epitaxial layers were also formed on single crystal silicon substrates. Junctions in the layers were created by both gaseous diffusion in a tube furnace and by vacuum deposition. The TiB/sub 2/ vacuum deposited bottom electrodes have resistivities between 30 and 40 ..mu.. ..cap omega..-cm. All-vacuum-deposited solar cells were fabricated for the first time. Efficiencies approaching those in the diffused junction devices were achieved. The n-layers were deposited on the previously deposited p-layer/TiB/sub 2//ceramic sandwiches by vacuum deposition of silicon in a phosphine (PH/sub 3/) atmosphere. Photovoltaic data in diffused junction samples, including efficiency and spectral response measurements, indicate that crystallite size may no longer be the limiting factor in achieving high efficiency; rather, performance is now being limited by the presence of impurities in the vacuum deposition silicon base region.
Date: August 1, 1980
Creator: Feldman, C.; Arrington, III, C. H.; Blum, N. A. & Satkiewicz, F. G.
System: The UNT Digital Library
Energy Programs at the Johns Hopkins University Applied Physics Laboratory, Quarterly Report, April-June 1980 (open access)

Energy Programs at the Johns Hopkins University Applied Physics Laboratory, Quarterly Report, April-June 1980

The Johns Hopkins University Applied Physics Laboratory, under contracts with several agencies of the federal government and an agency of the State of Maryland, is engaged in developing energy resources, utilization concepts, and monitoring and storage methods. This Quarterly Report summarizes the work on the various tasks as of 30 June 1980. The Energy Quarterly Report is divided into three sections. The first, Geothermal Energy Development Planning and Technical Assistance, supported by the Department of Energy/Division of Geothermal Energy (DOE/DGE), contains reports on the progress of geothermal-related tasks on which effort was concentrated during the quarter. The second section, Operational Research, Hydroelectric Power Development, supported by the Department of Energy/Resource Applications (DOE/RA), contains reports on small-scale hydroelectric investigations in the southeastern states. The third section, Energy Conversion and Storage Techniques, contains three articles. The first is on data analysis of OTEC core unit condenser tests, and is supported by the Department of Energy/Division of Central Solar Technology (DOE/CST). The second is on the current status of the Community Annual Storage Energy System at the U.S. Naval Air Station, Norfolk, Va., and is supported by the Department of Energy and the Department of Defense, Naval Facilities Engineering Command/Atlantic Division. The third …
Date: June 1, 1980
Creator: unknown
System: The UNT Digital Library
Geothermal energy development in the Eastern United States. Technical assistance report No. 4. Geothermal space heating: Pittsville Middle/Elementary School, Pittsville, Maryland (open access)

Geothermal energy development in the Eastern United States. Technical assistance report No. 4. Geothermal space heating: Pittsville Middle/Elementary School, Pittsville, Maryland

A technical evaluation was made to determine whether geothermal energy obtained from a well could be used to space heat the new school building being constructed as well as the existing elementary wing of the Pittsville School. The first part deals with space heating the new school building only; the second part pertains to space heating the new school building together with the new existing wing. An addendum was added for new well and production pump costs. (MHR)
Date: June 1, 1980
Creator: Briesen, R.V. & Yu, K.
System: The UNT Digital Library
Vacuum deposited polycrystalline silicon films for solar cell applications. Second quarterly technical progress report. January 1-March 31, 1980 (open access)

Vacuum deposited polycrystalline silicon films for solar cell applications. Second quarterly technical progress report. January 1-March 31, 1980

A careful study of a specially formed thin silicon layer on TiB/sub 2/-coated sapphire reveals that the interaction layer of TiSi/sub 2/ is composed of larger grains. Processing steps were developed which lead closer to the goal of fabricating polycrystalline silicon photovoltaic devices completely by vacuum deposition. Both n-type and p-type silicon are now being deposited. New deposition masks were made for depositing the n-regions upon the p-layers. New electrode deposition masks were also made for a direct electroding process to replace the photolithographic process used previously. The TiB/sub 2/ bottom electrode fabrication has been achieved in a single vacuum chamber. Reaction constants and activation energy for TiB/sub 2/ layer formation were determined to be less than those reported by other authors for bulk material. Studies of crystallite growth and interfacial interactions have continued. Major sources of undesirable impurities have been identified and removed from the vacuum chambers. The changes made this quarter have not been incorporated into a completed photovoltaic device.
Date: May 1, 1980
Creator: Feldman, C.; Arlington, III, C. H.; Blum, N. A. & Satkiewicz, F. G.
System: The UNT Digital Library
Low-cost flywheel demonstration program. Final report (open access)

Low-cost flywheel demonstration program. Final report

The Applied Physics Laboratory/Department of Energy Low Cost Flywheel Demonstration Program was initiated on 1 October 1977 and was successfully concluded on 31 December 19'9. The total cost of this program was $355,190. All primary objectives were successfully achieved as follows: demonstration of a full-size, 1)kWh flywheel having an estimated cost in large-volume production of approximately $50/kWh; developmeNt of a ball-bearing system having losses comparable to the losses in a totally magnetic suspension system; successful and repeated demonstration of the low-cost flywheel in a complete flywheel energy-storage system based on the use of ordinary house voltage and frequency; and application of the experience gained in the hardware program to project the system design into a complete, full-scale, 30-kWh home-type flywheel energy-storage system.
Date: April 1, 1980
Creator: unknown
System: The UNT Digital Library
Low-cost flywheel demonstration program. Final report, 1 October 1977-31 December 1979 (open access)

Low-cost flywheel demonstration program. Final report, 1 October 1977-31 December 1979

The Applied Physics Laboratory/Department of Energy Low Cost Flywheel Demonstration Program was initiated on 1 October 1977 and was successfully concluded on 31 December 1979. The total cost of this program was $355,190. All primary objectives were successfully achieved as follows: demonstration of a full-size, 1-kWh flywheel having an estimated cost in large-volume production of approximately $50/kWh; development of a ball-bearing system having losses comparable to the losses in a totally magnetic suspension system; successful and repeated demonstration of the low-cost flywheel in a complete flywheel energy-storage system based on the use of ordinary house voltage and frequency; and application of the experience gained in the hardware program to project the system design into a complete, full-scale, 30-kWh home-type flywheel energy-storage system.
Date: April 1, 1980
Creator: Rabenhorst, D. W.; Small, T. R. & Wilkinson, W. O.
System: The UNT Digital Library
Energy Programs at the Johns Hopkins University Applied Physics Laboratory, Quarterly Report, January-March 1980 (open access)

Energy Programs at the Johns Hopkins University Applied Physics Laboratory, Quarterly Report, January-March 1980

The Johns Hopkins University Applied Physics Laboratory, under contracts with several agencies of the federal government and an agency of the State of Maryland, is engaged in developing energy resources, utilization concepts, and monitoring and storage methods. This Quarterly Report summarizes the work on the various tasks as of 31 March 1980. The Energy Quarterly Report is divided into four sections. The first, Geothermal Energy Development Planning and Technical Assistance, supported by the Department of Energy/Division of Geothermal Energy (DOE/DGE), contains reports on the progress of geothermal-related tasks on which effort was concentrated during the quarter. The second section, Operational Research, Hydroelectric Power Development, supported by the Department of Energy/Resource Applications (DOE/DGE), contains reports on small-scale hydroelectric investigations in the southeastern states. The third section, Seismotectonic Investigation, supported by the Reactor Safety Research Division of the Nuclear Regulatory Commission, reports on a neotectonic investigation in Connecticut. The fourth section, Energy Conversion and Storage Techniques, contains two articles, the first on OTEC core unit testing supported by the Department of Energy/Division of Central Solar Technology (DOE/CST), and the second on an analysis of the Community Annual Storage Energy System at the U.S. Naval Air Station, Norfolk, Va. This work is supported …
Date: March 1, 1980
Creator: Entingh, Daniel J.
System: The UNT Digital Library
Vacuum deposited polycrystalline silicon films for solar cell applications. Quarterly report, September 15-December 31, 1979 (open access)

Vacuum deposited polycrystalline silicon films for solar cell applications. Quarterly report, September 15-December 31, 1979

Polycrystalline silicon films 14-22 ..mu..m thick and with average grain diameters of 20-40 ..mu..m were deposited by vacuum deposition onto both ceramic and sapphire substrates which were previously coated with a thin (1-2 ..mu..m) TiB/sub 2/ conducting layer. The large grains are the result of an interaction in the initial growth stages between silicon and TiB/sub 2/. SIMS studies of B/Ti/Al/sub 2/O/sub 3/, B/Al/sub 2/O/sub 3/, and Ti/Al/sub 2/O/sub 3/, interactions are reported as part of a continuing investigation of TiB/sub 2/ formation and silicon interactions on the TiB/sub 2/ surface. The increase in grain size has led to an improvement in the open-circuit voltage V/sub oc/, but not to an increase in the short-circuit current J/sub sc/. Capacitance-voltage measurements give results characteristic of an abrupt junction and a build-in voltage V/sub D/ consistent with the measured doping levels. A simple method for measuring the minority carrier diffusion length in the base region L/sub n/ is described. The measurements indicate that there is little change in L/sub n/ between large (20-40 ..mu..m) and small (approx. 5 ..mu..m) grained samples.
Date: March 1, 1980
Creator: Feldman, C.; Arrington, C. H.; Blum, N. A. & Satkiewicz, F. G.
System: The UNT Digital Library
Energy programs. Quarterly report, January-March 1980 (open access)

Energy programs. Quarterly report, January-March 1980

The Johns Hopkins University Applied Physics Laboratory, is engaged in developing energy resource, utilization concepts, and monitoring and storage methods. This Quarterly Report summarizes the work on the various tasks as of 31 March 1980. The Energy Quarterly Report is divided into four sections. The first, Geothermal Energy Development Planning and Technical Assistance, contains reports on the progress of geothermal-related tasks on which effort was concentrated during the quarter. The second section, Operational Research, Hydroelectric Power Development, contains reports on small-scale hydroelectric investigations in the southeastern states. The third section, Seismotectonic Investigation, reports on a neotectonic investigation in Connecticut. The fourth section, Energy Conversion and Storage Techniques, contains two articles, the first on OTEC core unit testing supported by the Department of Energy/Division of Central Solar Technology (DOE/CST), and the second on an analysis of the Community Annual Storage Energy System at the US Naval Air Station, Norfolk, Va.
Date: January 1, 1980
Creator: unknown
System: The UNT Digital Library