Degree Discipline

7 Matching Results

Results open in a new window/tab.

Tauberian Theorems for Certain Regular Processes (open access)

Tauberian Theorems for Certain Regular Processes

In 1943 R. C. Buck showed that a sequence x is convergent if some regular matrix sums every subsequence of x. Thus, for example, if every subsequence of x is Cesaro summable, then x is actually convergent. Buck's result was quite surprising, since research in summability theory up to that time gave no hint of such a remarkable theorem. The appearance of Buck's result in the Bulletin of the American Mathematical Society (3) created immediate interest and has prompted considerable research which has taken the following directions: (i) to study regular matrix transformations in order to shed light on Buck's theorem, (ii) to extend Buck's theorem, (iii) to obtain analogs of Buck's theorem for sequence spaces other than the space of convergent sequences, and (iv) to obtain analogs of Buck's theorem involving processes other than subsequencing, such as stretching. The purpose of the present paper is to contribute to all facets of the problem, particularly to (i), (iii), and (iv).
Date: August 1975
Creator: Keagy, Thomas A.
System: The UNT Digital Library
Properties of Some Classical Integral Domains (open access)

Properties of Some Classical Integral Domains

Greatest common divisor domains, Bezout domains, valuation rings, and Prüfer domains are studied. Chapter One gives a brief introduction, statements of definitions, and statements of theorems without proof. In Chapter Two theorems about greatest common divisor domains and characterizations of Bezout domains, valuation rings, and Prüfer domains are proved. Also included are characterizations of a flat overring. Some of the results are that an integral domain is a Prüfer domain if and only if every overring is flat and that every overring of a Prüfer domain is a Prüfer domain.
Date: May 1975
Creator: Crawford, Timothy B.
System: The UNT Digital Library
Linear Operators (open access)

Linear Operators

This paper is a study of linear operators defined on normed linear spaces. A basic knowledge of set theory and vector spaces is assumed, and all spaces considered have real vector spaces. The first chapter is a general introduction that contains assumed definitions and theorems. Included in this chapter is material concerning linear functionals, continuity, and boundedness. The second chapter contains the proofs of three fundamental theorems of linear analysis: the Open Mapping Theorem, the Hahn-Banach Theorem, and the Uniform Boundedness Principle. The third chapter is concerned with applying some of the results established in earlier chapters. In particular, the concepts of compact operators and Schauder bases are introduced, and a proof that an operator is compact if and only if its adjoint is compact is included. This chapter concludes with a proof of an important application of the Open Mapping Theorem, namely, the Closed Graph Theorem.
Date: December 1975
Creator: Malhotra, Vijay Kumar
System: The UNT Digital Library
Valuations and Valuation Rings (open access)

Valuations and Valuation Rings

This paper is an investigation of several basic properties of ordered Abelian groups, valuations, the relationship between valuation rings, valuations, and their value groups and valuation rings. The proofs to all theorems stated without proof can be found in Zariski and Samuel, Commutative Algebra, Vol. I, 1858. In Chapter I several basic theorems which are used in later proofs are stated without proof, and we prove several theorems on the structure of ordered Abelian groups, and the basic relationships between these groups, valuations, and their valuation rings in a field. In Chapter II we deal with valuation rings, and relate the structure of valuation rings to the structure of their value groups.
Date: August 1975
Creator: Badt, Sig H.
System: The UNT Digital Library
The Use of Chebyshev Polynomials in Numerical Analysis (open access)

The Use of Chebyshev Polynomials in Numerical Analysis

The purpose of this paper is to investigate the nature and practical uses of Chebyshev polynomials. Chapter I gives recognition to mathematicians responsible for studies in this area. Chapter II enumerates several mathematical situations in which the polynomials naturally arise and suggests reasons for the pursuance of their study. Chapter III includes: Chebyshev polynomials as related to "best" polynomial approximation, Chebyshev series, and methods of producing polynomial approximations to continuous functions. Chapter IV discusses the use of Chebyshev polynomials to solve certain differential equations and Chebyshev-Gauss quadrature.
Date: December 1975
Creator: Forisha, Donnie R.
System: The UNT Digital Library
Absolute Continuity and the Integration of Bounded Set Functions (open access)

Absolute Continuity and the Integration of Bounded Set Functions

The first chapter gives basic definitions and theorems concerning set functions and set function integrals. The lemmas and theorems are presented without proof in this chapter. The second chapter deals with absolute continuity and Lipschitz condition. Particular emphasis is placed on the properties of max and min integrals. The third chapter deals with approximating absolutely continuous functions with bounded functions. It also deals with the existence of the integrals composed of various combinations of bounded functions and finitely additive functions. The concluding theorem states if the integral of the product of a bounded function and a non-negative finitely additive function exists, then the integral of the product of the bounded function with an absolutely continuous function exists over any element in a field of subsets of a set U.
Date: May 1975
Creator: Allen, John Houston
System: The UNT Digital Library
Equivalent Sets and Cardinal Numbers (open access)

Equivalent Sets and Cardinal Numbers

The purpose of this thesis is to study the equivalence relation between sets A and B: A o B if and only if there exists a one to one function f from A onto B. In Chapter I, some of the fundamental properties of the equivalence relation are derived. Certain basic results on countable and uncountable sets are given. In Chapter II, a number of theorems on equivalent sets are proved and Dedekind's definitions of finite and infinite are compared with the ordinary concepts of finite and infinite. The Bernstein Theorem is studied and three different proofs of it are given. In Chapter III, the concept of cardinal number is introduced by means of two axioms of A. Tarski, and some fundamental theorems on cardinal arithmetic are proved.
Date: December 1975
Creator: Hsueh, Shawing
System: The UNT Digital Library