8 Matching Results

Results open in a new window/tab.

A laboratory Ivestigation of the Fluorination of Crude Uranium Tertrafluoride (open access)

A laboratory Ivestigation of the Fluorination of Crude Uranium Tertrafluoride

Ore concentrates have been converted directly to crude uranium tetrafluoride by hydrogen reduction and hydrofluorination in fluidized-bed reactors. Small-scale laboratory experiments demonstrated that this process can be extended to the production of crude uranium hexafluoride through fluorination of the uranium tetrafluoride in a fluidized bed. The satisfactory temperature range for the reaction lies between 300°C and 600°C. At 450°C the fluorine utilization is between 50 and 80 per cent. With excess fluorine, over 99 per cent of the uranium is volatilized from the solid material. The fluidization characteristics of certain materials are improved by the addition of an inert solid diluent to the bed.
Date: December 1957
Creator: Sandus, O. & Steunenberg, R. K.
System: The UNT Digital Library
Chemical Engineering Division Summary Report July, August, and September, 1957 (open access)

Chemical Engineering Division Summary Report July, August, and September, 1957

Development work continued on a fused salt process for the recovery of uranium from zirconium-matrix fuel alloys. The fuel is dissolved in a sodium fluoride-zirconium fluoride melt at 600°C by hydrogen fluoride sparging. The melt is then sparged with fluorine gas which volatilizes the dissolved uranium as the hexafluoride. The final decontamination and purification of the uranium hexafluoride are accomplished by fractional distillation. The testing of graphite as a container material for the hydrofluorination step was continued. Additional thermal cycling experiments were performed, using a helium sparge in equimolar sodium fluoride-zirconium fluoride melt at 600°C. The extent of penetration of the fused salt into the graphite was determined. No mechanical degradation was present. Dimensional change data were also obtained for graphite vessels in which the fused salt was sparged with hydrogen fluoride.
Date: December 1957
Creator: Lawroski, Stephen; Rodger, W. A.; Vogel, R. C. & Munnecke, V. H.
System: The UNT Digital Library
Chemical Engineering Division Summary Report for January, February, and March 1957 (open access)

Chemical Engineering Division Summary Report for January, February, and March 1957

A fused fluoride process for dissolution of zirconium-uranium fuel alloys is being developed. The alloy is dissolved in an equimolar sodium fluoride-zirconium fluoride melt at 600°C by sparging the system with hydrogen fluoride. The uranium is volatilized from the melt as the hexafluoride by a sparging operation with fluorine or bromine pentafluoride vapor. This product is then decontaminated and purified by fractional distillation.
Date: July 1957
Creator: Lawroski, Stephen; Rodger, W. A.; Vogel, R. C. & Munnecke, V. H.
System: The UNT Digital Library
A Coated Cast Iron Crucible for use with Eutectic Al-Si Alloy in the Temperature Range 595°-650°C (open access)

A Coated Cast Iron Crucible for use with Eutectic Al-Si Alloy in the Temperature Range 595°-650°C

The feasibility of the coated metal crucible as a container for eutectic Al-Si alloy has been proven by test. Small, enamel-coated cast iron pots has been proven by test. Small, enamel-coated cast iron pots have successfully withstood the chemically aggressive Al-Si alloy and the adverse influence of an oxidizing atmosphere for a period of 3 months at 725°C. A similarly coated castiron crucible containing 450 pounds of eutectic Al-Si alloy was successfully tested for 144 days in a jacketing operation conducted at 595°-650°C. Under the same conditions, the normal service life of clay-bonded graphite and silicon carbide crucibles rarely exceeds 45 days. The coating material is a commercially available enamel capable of withstanding temperatures up to 790°C (1450°F). It is readily applied to the surface of a variety of ferrous metals and alloys; however, best results are obtained with alloys low in chromium and nickel which also have a low thermal expansion coefficient.
Date: November 1957
Creator: Yaggee, F. L.
System: The UNT Digital Library
Chemical Engineering Division Summary Report October, November, and December, 1956 (open access)

Chemical Engineering Division Summary Report October, November, and December, 1956

A final series of runs was made in a four-inch continuous-flow mixing chamber to study the transfer of isobutanol into water and nitrobenzene into ethylene glycol. Satisfactory techniques were developed to provide for the rapid analysis of these systems. In addition, a light-scattering correlation was prepared to provide a measure of the interfacial area of the yellow-colored nitrobenzene-ethylene glycol mixtures.
Date: March 1957
Creator: Lawroski, Stephen; Rodger, W. A.; Vogel, R. C. & Munnecke, V. H.
System: The UNT Digital Library
Argonne National Laboratory Annual Report: 1957 (open access)

Argonne National Laboratory Annual Report: 1957

Report issued by the Argonne National Laboratory discussing the variety of work done at the laboratory during the year of 1957. This report includes tables, illustrations, and photographs.
Date: 1957
Creator: Argonne National Laboratory
System: The UNT Digital Library
Engineering, Construction and Cost of the Argonaut Reactor (open access)

Engineering, Construction and Cost of the Argonaut Reactor

Report describing the Argonaut Reactor located at the Argonne National Laboratory. Photographs and descriptive drawings of the reactor are included.
Date: March 1957
Creator: Armstrong, R. H.; Kolb, W. L.; Lennox, D. H.; Kelber, C. N.; Selep, Andrew & Spinrad, B. I.
System: The UNT Digital Library
The EBWR: Experimental Boiling Water Reactor (open access)

The EBWR: Experimental Boiling Water Reactor

Report issued by the Argonne National Laboratory discussing the Experimental Boiling Water Reactor (EBWR) power plant. Designs of the final EBWR power plant are presented. This report includes tables, illustrations, and photographs.
Date: May 1957
Creator: Argonne National Laboratory
System: The UNT Digital Library