A Method to Quantify the Radiation Characteristics of an Unknown Interference Source (open access)

A Method to Quantify the Radiation Characteristics of an Unknown Interference Source

From introduction: A new method for determining the radiation characteristics of leakage from electronic equipment for interference studies is described in this report. Basically, an unintentional leakage source is considered to be electrically small, and may be characterized by three equivalent orthogonal electric dipole moments and three equivalent orthogonal magnetic dipole moments. When an unknown source object is placed at the center of a transverse electromagnetic (TEM) cell, its radiated energy couples into the fundamental transmission mode and propagates toward the two output ports of the TEM cell. With a hybrid junction inserted into a loop connecting the cell output ports, one is able to measure the sum and difference powers and the relative phase between the sum and difference outputs. Systematic measurements of these powers and phases at six different source object positions, based on a well-developed theory, are sufficient to determine the amplitudes and phases of the unknown component dipole moments, from which the detailed free-space radiation pattern of the unknown source and the total radiated power can be determined. Results of simulated theoretical examples and an experiment using a spherical dipole radiator are given to illustrate the theory and measurement procedure.
Date: October 1982
Creator: Ma, Mark T. & Koepke, Galen H.
System: The UNT Digital Library
A System for Measuring Energy and Peak Power of Low-Level 1.064 [mu]m Laser Pulses (open access)

A System for Measuring Energy and Peak Power of Low-Level 1.064 [mu]m Laser Pulses

From introduction: For the first time, transfer standards have been developed for measuring 1.064 Pm laser pulses of duration about 10-100 ns, peak irradiance of about 10-8-10-4 W/cm2, and fluences of about 10-16-10-11 J/cm2 . These energy and power measurement devices use PIN and APD silicon detectors, respectively, and can be used as stable transfer standards with total uncertainties (random errors computed at the 95 percent confidence level) of 10 to 15 percent. The system for calibrating these transfer standards is also described and consists of a cw Nd:YAG laser beam acousto-optically modulated to provide low-level laser pulses of known peak power and energy. A detailed evaluation of systematic and random errors is also shown.
Date: October 1982
Creator: Sanders, A. A. & Rasmussen, A. L.
System: The UNT Digital Library