States

Analytical Model for Lateral Deflection in Cold-formed Steel Framed Shear Walls with Steel Sheathing (open access)

Analytical Model for Lateral Deflection in Cold-formed Steel Framed Shear Walls with Steel Sheathing

An analytical model for lateral deflection in cold-formed steel shear walls sheathed with steel is developed in this research. The model is based on the four factors: fastener displacement, steel sheet deformation, and hold-down deformation, which are from the effective strip concept and a complexity factor, which accounts for the additional influential factors not considered in the previous three terms. The model uses design equations based on the actual material and mechanical properties of the shear wall. Furthermore, the model accounts for aggressive and conservative designers by predicting deflection at different shear strength degrees.
Date: December 2014
Creator: Yousof, Mohamad
System: The UNT Digital Library
Comparative Analysis and Implementation of High Data Rate Wireless Sensor Network Simulation Frameworks (open access)

Comparative Analysis and Implementation of High Data Rate Wireless Sensor Network Simulation Frameworks

This thesis focuses on developing a high data rate wireless sensor network framework that could be integrated with hardware prototypes to monitor structural health of buildings. In order to better understand the wireless sensor network architecture and its consideration in structural health monitoring, a detailed literature review on wireless sensor networks has been carried out. Through research, it was found that there are numerous simulation software packages available for wireless sensor network simulation. One suitable software was selected for modelling the framework. Research showed that Matlab/Simulink was the most suitable environment, and as a result, a wireless sensor network framework was designed in Matlab/Simulink. Further, the thesis illustrates modeling of a simple accelerometer sensor, such as those used in wireless sensor networks in Matlab/Simulink using a mathematical description. Finally, the framework operation is demonstrated with 10 nodes, and data integrity is analyzed with cyclic redundancy check and transmission error rate calculations.
Date: December 2015
Creator: Laguduva Rajaram, Madhupreetha
System: The UNT Digital Library
Computer Virus Spread Containment Using Feedback Control. (open access)

Computer Virus Spread Containment Using Feedback Control.

In this research, a security architecture based on the feedback control theory has been proposed. The first loop has been designed, developed and tested. The architecture proposes a feedback model with many controllers located at different stages of network. The controller at each stage gives feedback to the one at higher level and a decision about network security is taken. The first loop implemented in this thesis detects one important anomaly of virus attack, rate of outgoing connection. Though there are other anomalies of a virus attack, rate of outgoing connection is an important one to contain the spread. Based on the feedback model, this symptom is fed back and a state model using queuing theory is developed to delay the connections and slow down the rate of outgoing connections. Upon implementation of this model, whenever an infected machine tries to make connections at a speed not considered safe, the controller kicks in and sends those connections to a delay queue. Because of delaying connections, rate of outgoing connections decrease. Also because of delaying, many connections timeout and get dropped, reducing the spread. PID controller is implemented to decide the number of connections going to safe or suspected queue. Multiple …
Date: December 2004
Creator: Yelimeli Guruprasad, Arun
System: The UNT Digital Library

Construction Management Methods and Techniques in Army Tactical Shelter

Access: Use of this item is restricted to the UNT Community
This thesis presents a research effort aimed at developing using construction methods and techniques in army tactical shelter. The beginning step focuses on developing and identifying different activities and work breakdown structure applicable in shelter prototype. The next step focuses on identifying resource allocation. This include allocate resources based on the delivered project as per alternative one and for the second alternative as optimization, resource allocation modified and tried to level and minimize resource peak. In addition, the cost calculated for the whole project as well as for each WBS and activities which consider as alternative one and in the second alternative, cost mitigation applied according to available resources and adjusting predecessors and successors of each activity. In conclusion, two alternatives compared, available outcome presents, and future work suggested for the project team to continue this effort.
Date: December 2019
Creator: Yeganehtalab, Babak
System: The UNT Digital Library
Cost Savings Realized Through Proper Sizing of an Excessive Instrument Air System. (open access)

Cost Savings Realized Through Proper Sizing of an Excessive Instrument Air System.

The purpose of this research was to determine if installing a smaller air compressor could reduce the electrical usage of a large semiconductor manufacturing plant. A 200 horsepower Atlas Copco compressor was installed with the existing 500 horsepower Ingersoll-Rand compressors. Testing was conducted during the regular manufacturing process at MEMC Southwest in Sherman, Texas. Analysis of the data found that installing the new compressor could reduce electrical consumption. The study also found there are specific operational setpoints that allow the compressor to operate more efficiently.
Date: December 2003
Creator: Condron, Ewell D.
System: The UNT Digital Library
Design and Validation of an Automated Multiunit Composting System. (open access)

Design and Validation of an Automated Multiunit Composting System.

This thesis covers the design of an automated multiunit composting system (AMUCS) that was constructed to meet the experimental apparatus requirements of the ASTM D5338 standard. The design of the AMUCS is discussed in full detail and validated with two experiments. The first experiment was used to validate the operation of the AMUCS with a 15 day experiment. During this experiment visual observations were made to visually observe degradation. Thermal properties and stability tests were performed to quantify the effects of degradation on the polymer samples, and the carbon metabolized from the degradation of samples was measured. The second experiment used the AMUCS to determine the effect of synthetic clay nanofiller on the aerobic biodegradability behavior of poly (3-hydroxybutyrate-co-3-hydroxyvalerate).
Date: December 2009
Creator: Pickens, Mark Everett
System: The UNT Digital Library

Design Method of Cold-Formed Steel Framed Shear Wall Sheathed by Structural Concrete Panel

Access: Use of this item is restricted to the UNT Community
The objective of this research is developing a new method of design for cold-formed steel framed shear wall sheathed by ¾" thick USG structural panel concrete subfloor using a predictive analytical model and comparing the results obtained from the model with those achieved from real testing to verify the analytical model and predicted lateral load-carrying capacity resulted from that. Moreover, investigating the impact of various screw spacings on shear wall design parameter such as ultimate strength, yield strength, elastic stiffness, ductility ratio and amount of energy dissipation is another purpose of this research.
Date: December 2019
Creator: Ashkanalam, Aida
System: The UNT Digital Library
Development and Test of High-Temperature Piezoelectric Wafer Active Sensors for Structural Health Monitoring (open access)

Development and Test of High-Temperature Piezoelectric Wafer Active Sensors for Structural Health Monitoring

High-temperature piezoelectric wafer active sensors (HT-PWAS) have been developed for structure health monitoring at hazard environments for decades. Different candidates have previously been tested under 270 °C and a new piezoelectric material langasite (LGS) was chosen here for a pilot study up to 700 °C. A preliminary study was performed to develop a high temperature sensor that utilizes langasite material. The Electromechanical impedance (E/M) method was chosen to detect the piezoelectric property. Experiments that verify the basic piezoelectric property of LGS at high temperature environments were carried out. Further validations were conducted by testing structures with attached LGS sensors at elevated temperature. Additionally, a detection system simulating the working process of LGS monitoring system was developed with PZT material at room temperature. This thesis, for the first time, (to the best of author’s knowledge) presents that langasite is ideal for making piezoelectric wafer active sensors for high temperature structure health monitoring applications.
Date: December 2014
Creator: Bao, Yuanye
System: The UNT Digital Library

Development of a Coaxiality Indicator

Access: Use of this item is restricted to the UNT Community
The geometric dimensioning and tolerancing concept of coaxiality is often required by design engineers for balance of rotating parts and precision mating parts. In current practice, it is difficult for manufacturers to measure coaxiality quickly and inexpensively. This study examines feasibility of a manually-operated, mechanical device combined with formulae to indicate coaxiality of a test specimen. The author designs, fabricates, and tests the system for measuring coaxiality of holes machined in a steel test piece. Gage Repeatability and Reproducibility (gage R&R) and univariate analysis of variance is performed in accordance with Measurement System Analysis published by AIAG. Results indicate significant design flaws exist in the current configuration of the device; observed values vary greatly with operator technique. Suggestions for device improvements conclude the research.
Date: December 1999
Creator: Arendsee, Wayne C.
System: The UNT Digital Library

Development of a Hybrid Molecular Ultraviolet Photodetector based on Guanosine Derivatives

Access: Use of this item is restricted to the UNT Community
Modern studies on charge transfer reaction and conductivity measurements of DNA have shown that the electrical behavior of DNA ranges from that of an insulator to that of a wide bandgap semiconductor. Based on this property of DNA, a metal-semiconductor-metal photodetector is fabricated using a self-assembled layer of deoxyguanosine derivative (DNA base) deposited between gold electrodes. The electrodes are lithographically designed on a GaN substrate separated by a distance L (50nm < L < 100nm). This work examines the electrical and optical properties of such wide-bandgap semiconductor based biomaterial systems for their potential application as photodetectors in the UV region wherein most of the biological agents emit. The objective of this study was to develop a biomolecular electronic device and design an experimental setup for electrical and optical characterization of a novel hybrid molecular optoelectronic material system. AFM results proved the usage of Ga-Polar substrate in conjugation with DG molecules to be used as a potential electronic based sensor. A two-terminal nanoscale biomolectronic diode has been fabricated showing efficient rectification ratio. A nanoscale integrated ultraviolet photodetector (of dimensions less than 100 nm) has been fabricated with a cut-off wavelength at ~ 320 nm.
Date: December 2005
Creator: Liddar, Harsheetal
System: The UNT Digital Library
Direct Immersion Cooling Via Nucleate Boiling of HFE-7100 Dielectric Liquid on Hydrophobic and Hydrophilic Surfaces (open access)

Direct Immersion Cooling Via Nucleate Boiling of HFE-7100 Dielectric Liquid on Hydrophobic and Hydrophilic Surfaces

This study experimentally investigated the effect of hydrophobic and hydrophilic surfaces characteristics on nucleate boiling heat transfer performance for the application of direct immersion cooling of electronics. A dielectric liquid, HFE – 7100 was used as the working fluid in the saturated boiling tests. Twelve types of 1-cm2 copper heater samples, simulating high heat flux components, featured reference smooth copper surface, fully and patterned hydrophobic surface and fully and patterned hydrophilic surfaces. Hydrophobic samples were prepared by applying a thin Teflon coating following photolithography techniques, while the hydrophilic TiO2 thin films were made through a two step approach involving layer by layer self assembly and liquid phase deposition processes. Patterned surfaces had circular dots with sizes between 40 – 250 μm. Based on additional data, both hydrophobic and hydrophilic surfaces improved nucleate boiling performance that is evaluated in terms of boiling incipience, heat transfer coefficient and critical heat flux (CHF) level. The best results, considering the smooth copper surface as the reference, were achieved by the surfaces that have a mixture of hydrophobic/hydrophilic coatings, providing: (a) early transition to boiling regime and with eliminated temperature overshoot phenomena at boiling incipience, (b) up to 58.5% higher heat transfer coefficients, and (c) …
Date: December 2014
Creator: Joshua, Nihal E.
System: The UNT Digital Library
Dynamic Behaviors of Historical Wrought Iron Truss Bridges – a Field Testing Case Study (open access)

Dynamic Behaviors of Historical Wrought Iron Truss Bridges – a Field Testing Case Study

Civil infrastructure throughout the world serves as main arteries for commerce and transportation, commonly forming the backbone of many societies. Bridges have been and remain a crucial part of the success of these civil networks. However, the crucial elements have been built over centuries and have been subject to generations of use. Many current bridges have outlived their intended service life or have been retrofitted to carry additional loads over their original design. A large number of these historic bridges are still in everyday use and their condition needs to be monitored for public safety. Transportation infrastructure authorities have implemented various inspection and management programs throughout the world, mainly visual inspections. However, careful visual inspections can provide valuable information but it has limitations in that it provides no actual stress-strain information to determine structural soundness. Structural Health Monitoring (SHM) has been a growing area of research as officials need to asses and triage the aging infrastructure with methods that provide measurable response information to determine the health of the structure. A rapid improvement in technology has allowed researchers to start using new sensors and algorithms to understand the structural parameters of tested structures due to known and unknown loading scenarios. …
Date: December 2015
Creator: Hedric, Andrew C.
System: The UNT Digital Library
Effect of Amines as Corrosion Inhibitors for a Low Carbon Steel in Power Industry (open access)

Effect of Amines as Corrosion Inhibitors for a Low Carbon Steel in Power Industry

Commonly used amines in power industry, including morpholine, DBU (1,8-diazabicyclo[5.4.0]undec-7-ene), and DMA (dimethylallylamine) were evaluated for their effect on AISI 1018 steel at 250oF. Samples were exposed to an autoclave containing amine added aqueous solution at pH of 9.5 for 1, 2, 4, 6, 8, and 12 hours. Morphology studies were carried using scanning electron microscope (SEM), phase analysis was done utilizing Fourier transform infrared spectroscopy (FTIR), and weight loss was performed to assess kinetics of oxidation. Control samples showed the highest metal dissolution rate. DBU showed the best performance in metal protection and SEM indicated the presence of a free-crack layer formed by fine particles in that set. FTIR showed that DBU apparently favored the formation of magnetite. It is believed that fine particles impede intrusion of aggressive ions into the metal surface by forming a barrier layer. FTIR demonstrated that DMA formed more oxyhydroxides, whereas morpholine presented magnetite to hematite transformation as early as 2 hours. SEM revealed that control and DMA produced acicular particles characteristic of oxyhydroxides while morpholine and DBU presented more equiaxed particles.
Date: December 2004
Creator: Díaz, Jorge G.
System: The UNT Digital Library

Effect of Engineered Surfaces on Valve Performance

Access: Use of this item is restricted to the UNT Community
Performance of air operated valves is a major maintenance concern in process industries. Anecdotal information indicates that reliability of some high maintenance valves has been improved by using an ion deposition process to achieve engineered surfaces on selected components. This project compared friction for various surface treatments of selected valve components. Results indicate valve performance may be slightly more consistent when an engineered surface is applied in the valve packing area; however surface treatment in this area does not appear to have a dominant affect on reducing valve friction. Results indicate a linear relation between stem friction and torque applied to packing flange nuts, and even after a valve is in service, controlled packing adjustments can be made without significantly changing valve stroke time.
Date: December 2000
Creator: Pope, Larry G.
System: The UNT Digital Library
Effect of Polyphosphoric Acid on Aging Characteristics of PG 64-22 Asphalt Binder (open access)

Effect of Polyphosphoric Acid on Aging Characteristics of PG 64-22 Asphalt Binder

This research presents the results on an experimental investigation to identify the effect of polyphosphoric acid (PPA) on aging characteristics of an asphalt binder. Addition of PPA to asphalt binders is said to improve performance of flexible pavements. Asphalt binder PG 64-22 in modified and unmodified conditions was subjected to aging in the laboratory using a regular oven and also simulated short term aging using rolling thin film oven (RTFO) test. Aging experiments were conducted to analyze the extent of oxidation in terms of changes in molecular structure of the asphalt binder. These changes were appraised using Fourier transform infrared (FTIR) spectroscopy, dynamic shear rheometer (DSR), and epifluorescence microscopy tests. FTIR was used to determine the changes in major bands with addition of PPA. Stiffness and viscoelastic behaviors of asphalts were determined from the DSR test. The stiffness is measured by calculating the shear modulus, G* and the viscoelastic behavior is measured by calculating the phase angle, sin &#948;. Epifluorescence microscopy is a tool used to study properties of organic or inorganic substances. The morphological characteristics of PPA modified asphalt samples were observed through epifluorescence microscopy. Epifluorescence microscopy reveals the polymer phase distribution in the asphalt binders. Results of this …
Date: December 2010
Creator: Ramasamy, Naresh Baboo
System: The UNT Digital Library
Effects of a Surface Engineered Metallic Coating on Elastomeric Valve Stem Seal Leakage (open access)

Effects of a Surface Engineered Metallic Coating on Elastomeric Valve Stem Seal Leakage

Valve stem seal leakage is a major source of fugitive emissions, and controlling these emissions can result in added expense in leak detection and repair programs. Elastomeric O-rings can be used as valve stem seals, and O-ring manufacturers recommend lubrication of elastomeric seals to prevent damage and to assure proper sealing. In this research, a metallic coating was applied as a lubricant using a vacuum vapor deposition process to the surface of elastomeric valve stem seals. Valve stem leak measurements were taken to determine if the coated O-rings, alone or with the recommended lubrication, reduced valve stem seal leakage. This research determined that the metallic coating did not reduce valve stem leakage.
Date: December 2000
Creator: Taylor, John Abner
System: The UNT Digital Library
Effects of Minimum Quantity Lubrication in Drilling 1018 Steel. (open access)

Effects of Minimum Quantity Lubrication in Drilling 1018 Steel.

A common goal for industrial manufacturers is to create a safer working environment and reduce production costs. One common method to achieve this goal is to drastically reduce cutting fluid use in machining. Recent advances in machining technologies have made it possible to perform machining with minimum-quantity lubrication (MQL). Drilling takes a key position in the realization of MQL machining. In this study the effects of using MQL in drilling AISI 1018 steel with HSS tools using a vegetable based lubricant were investigated. A full factorial experiment was conducted and regression models were generated for both surface finish and hole size. Lower surface roughness and higher tool life were observed in the lowest speed and feed rate combination.
Date: December 2008
Creator: Shaikh, Vasim
System: The UNT Digital Library
Electrical resistivity as a measure of change of state in substrates: Design, development and validation of a microprocessor-based system. (open access)

Electrical resistivity as a measure of change of state in substrates: Design, development and validation of a microprocessor-based system.

Smart structures are relevant and significant because of their relevance to phenomena such as hazard mitigation, structural health monitoring and energy saving. Electrical resistance could potentially serve as an indicator of structural well-being or damage in the structure. To this end, the development of a microprocessor-based automated resistance measurement system with customized GUI is desired. In this research, a nodal electrical resistance acquisition circuit (NERAC) system was designed. The system hardware interfaces to a laptop, which houses a customized GUI developed using DAQFactory software. Resistance/impedance was measured using DC/AC methods with four-point probes technique, on three substrates. Baseline reading before damage was noted and compared with the resistance measured after damage. The device was calibrated and validated on three different substrates. Resistance measurements were taken from PVDF samples, composite panels and smart concrete. Results conformed to previous work done on these substrates, validating the effective working of the NERAC device.
Date: December 2009
Creator: Le, Dong D.
System: The UNT Digital Library
Energy Harvesting Wireless Piezoelectric Resonant Force Sensor (open access)

Energy Harvesting Wireless Piezoelectric Resonant Force Sensor

The piezoelectric energy harvester has become a new powering option for some low-power electronic devices such as MEMS (Micro Electrical Mechanical System) sensors. Piezoelectric materials can collect the ambient vibrations energy and convert it to electrical energy. This thesis is intended to demonstrate the behavior of a piezoelectric energy harvester system at elevated temperature from room temperature up to 82°C, and compares the system’s performance using different piezoelectric materials. The systems are structured with a Lead Magnesium Niobate-Lead Titanate (PMN-PT) single crystal patch bonded to an aluminum cantilever beam, Lead Indium Niobate-Lead Magnesium Niobate-Lead Titanate (PIN-PMN-PT) single crystal patch bonded to an aluminum cantilever beam and a bimorph cantilever beam which is made of Lead Zirconate Titanate (PZT). The results of this experimental study show the effects of the temperature on the operation frequency and output power of the piezoelectric energy harvesting system. The harvested electrical energy has been stored in storage circuits including a battery. Then, the stored energy has been used to power up the other part of the system, a wireless resonator force sensor, which uses frequency conversion techniques to convert the sensor’s ultrasonic signal to a microwave signal in order to transmit the signal wirelessly.
Date: December 2013
Creator: Ahmadi, Mehdi
System: The UNT Digital Library

Evaluation of dynamic and static electrical characteristics for the DY8 and YI8 process gallium diodes in comparison to the DI8 process boron diodes.

Access: Use of this item is restricted to the UNT Community
A rectifier is an electrical device, comprising one or more semiconductor devices arranged for converting alternating current to direct current by blocking the negative or positive portion of the waveform. The purpose of this study would be to evaluate dynamic and static electrical characteristics of rectifier chips fabricated with (a) DY8 process and (b) YI8 process and compare them with the existing DI8 process rectifiers. These new rectifiers were tested to compare their performance to meet or exceed requirements of lower forward voltages, leakage currents, reverse recovery time, and greater sustainability at higher temperatures compared to diodes manufactured using boron as base (DI8 process diodes) for similar input variables.
Date: December 2006
Creator: Dhoopati, Swathi
System: The UNT Digital Library
Fabrication and Testing of Biomimetic Microstructures for Walkway Tribometers (open access)

Fabrication and Testing of Biomimetic Microstructures for Walkway Tribometers

The main objective of this work is to give contribution in both additive manufacturing (AM) and tribometry derived from the application and study of materials available with the use of biomimetic designs. Additional contributions are determining what effects treatments for flooring surfaces may have on the dynamic coefficient of friction and the effects of these products on common surfaces. The validity of the proposed methodology for a proof of concept was demonstrated by comparing measured dynamic coefficient of friction for designs using standardized equipment and comparing these values to plantar skin tested using an accepted and standardized testing method that has been extensively researched and validated. Initial biomimetic designs and characteristics unique to each design were researched and compared. Eleven designs were selected to be fabricated, tested, and compared to select the most desirable applications for further investigation. Research into potential treatments commercially available for use was done to determine the efficacy of these products. Prototype sensor designs were selected and fabricated using direct light processing (DLP) technology. Examination of the measured values was done through an analysis of the variances in the response variable and comparisons using Fisher and Tukey pairwise comparison method. Future work recommendations are provided for …
Date: December 2019
Creator: Haney, Christopher Willard
System: The UNT Digital Library
Fracture Toughness Testing of Plastics under Various Environmental Conditions (open access)

Fracture Toughness Testing of Plastics under Various Environmental Conditions

The primary objective of this study is to test the applicability to plastics of a fracture toughness testing tool developed for metals. The intent is to study pre-test conditioning of several plastic materials and the effect of the depth of the razor notch cut in the chevron notched fracture toughness test specimens. The study includes the careful preparation of samples followed by conditioning in various environments. Samples were subjected to laboratory air for a specific duration or to a controlled temperature-humidity condition as per the ASTM D1870. Some of the samples were subjected to vacuum conditioning under standard test specifications. Testing was conducted using the conventional three-point bend test as per ASTM D5045-95. ASTM E1304, which sets a standard for short rod and bar testing of metals and ceramics provides some basis for conducting chevron notched four-point bend tests to duplicate the toughness tool. Correlation of these results with the ASTM test samples is determined. The four-point bend test involves less specimen machining as well as time to perform the fracture toughness tests. This study of fracture toughness testing has potential for quality control as well as the fracture property determination.
Date: December 1997
Creator: Velpuri, Seshagirirao V.
System: The UNT Digital Library
Guidelines for Greening (Renovation) of Existing Homes (open access)

Guidelines for Greening (Renovation) of Existing Homes

This Thesis is aimed at evaluating the options of renovation for an existing residential building to make it more energy efficient. The various aspects in the basic structures of residential homes are discussed in order to help the user identify the areas of the house for which renovation is required to improve the energy efficiency of the building. These aspects include doors, roof and wall in addition to various systems of electrical wiring, mechanical systems of ventilation, heating and cooling and plumbing systems for the efficient flow of water throughout the house. The renovation options have been described in detail to provide as many possibilities to the user as possible. The building taken for renovation is a 1953 suburban home which has been awarded the honor of being the first building to be labeled as Zero Energy Home in its vicinity. This has made the home so efficient that its expenditure of energy has become equivalent to its energy generation, therefore, cancelling each other out and creating an estimate of zero energy.
Date: December 2015
Creator: Shaikh, Gilman Yusuf
System: The UNT Digital Library
Hardware and Software Codesign of a JPEG2000 Watermarking Encoder (open access)

Hardware and Software Codesign of a JPEG2000 Watermarking Encoder

Analog technology has been around for a long time. The use of analog technology is necessary since we live in an analog world. However, the transmission and storage of analog technology is more complicated and in many cases less efficient than digital technology. Digital technology, on the other hand, provides fast means to be transmitted and stored. Digital technology continues to grow and it is more widely used than ever before. However, with the advent of new technology that can reproduce digital documents or images with unprecedented accuracy, it poses a risk to the intellectual rights of many artists and also on personal security. One way to protect intellectual rights of digital works is by embedding watermarks in them. The watermarks can be visible or invisible depending on the application and the final objective of the intellectual work. This thesis deals with watermarking images in the discrete wavelet transform domain. The watermarking process was done using the JPEG2000 compression standard as a platform. The hardware implementation was achieved using the ALTERA DSP Builder and SIMULINK software to program the DE2 ALTERA FPGA board. The JPEG2000 color transform and the wavelet transformation blocks were implemented using the hardware-in-the-loop (HIL) configuration.
Date: December 2008
Creator: Mendoza, Jose Antonio
System: The UNT Digital Library