94 Matching Results

Results open in a new window/tab.

Degradation Mechanisms and Dynamics of Silicon Telluride: A Guide to the Effective Fabrication and Characterization of Silicon Telluride-Based Devices (open access)

Degradation Mechanisms and Dynamics of Silicon Telluride: A Guide to the Effective Fabrication and Characterization of Silicon Telluride-Based Devices

Silicon telluride (Si2Te3) and many other tellurium containing compounds show emergent Raman peaks located at ~120 cm-1 and ~140 cm-1 as they age. The origin of these two emergent peaks is controversial in the literature and has been attributed to myriad causes such as the intrinsic Raman modes of the telluride materials, surface oxidation, defects, double resonances, and tellurium precipitates. The controversial nature of these peaks has led to the misidentification of highly degraded materials as pristine and to the misinterpretation of changes in Raman spectra. For the first time, quality thin film and bulk crystals of Si2Te3 are grown using a chemical vapor deposition (CVD) process. We then present a comprehensive and multimodal study of various Si2Te3 samples and find that the two emergent Raman peaks originate from tellurium nano-crystallites formed in the degraded surface layers of Si2Te3. The formation of the tellurium nano-crystallites are shown to be a result of a hydrolysis process in which Si2Te3 reacts with atmospheric water vapor. The challenges involved in the fabrication of Si2Te3 based devices are also discussed and ways in which degradation can be either prevented or reversed are demonstrated. Finally, we present preliminary data which shows promising low voltage switching …
Date: December 2023
Creator: Hathaway, Evan Allen
System: The UNT Digital Library

Transport of Proton, Hydrogen and Alpha Particles through Atomic Hydrogen Environment

Using multiple theoretical methods, comprehensive calculations are performed to create a new and more comprehensive data set for elastic scattering and related transport cross sections for collisions of (H$^+$ + H), (H + H) and (He$^{2+}$ + H) in the center-of-mass energy frame. In proton-atomic hydrogen collisions, we have significantly updated and extended previous work of elastic scattering, charge transfer and related transport integral and differential cross sections in the center-of-mass energy range $10^{-4} - 10^4$ eV where the multi-channel molecular orbital approach (MO3) is used. For atomic hydrogen-hydrogen collisions, similar updates have been made of elastic scattering and spin exchange differential and integral cross sections, also for the H + H collision the ionization and negative ion formation cross sections are provided in energy range (1-20 KeV) by use of the 'hidden crossing' theoretical framework. For collisions of alpha particles with atomic hydrogen we have computed the elastic scattering cross section in the center-of-mass energy range $10^{-4} - 10^8$ eV. In this case, at the lowest energies where elastic scattering greatly dominates other reaction channels, a single-channel quasi-molecular-orbital approach (MO1) is used. With the opening of inelastic channels at higher energies the multi-channel atomic-orbital, close-coupling method is applied, and …
Date: December 2023
Creator: Zaman, Tamanna
System: The UNT Digital Library
Optical Control of Coherent Quantum Systems (open access)

Optical Control of Coherent Quantum Systems

Optical control of coherent quantum systems has many methods and applications. In this defense we will discuss the effects of an electric field interacting with molecules with dipole moments. The theoretical study of such molecules will consist of two-level atom and a three-level atom in the λ configuration. The methods that will be discussed are population trapping using both bright and dark starts obtained by both STIRAP and CHIRAP pulses. The application to be discussed is how to create a room temperature maser.
Date: December 2022
Creator: Roy, Colin Dean
System: The UNT Digital Library

Investigating Accretion Mechanisms and Host Galaxy Environments of z~4 Quasars

Observations of quasars at the highest accessible redshifts have revealed supermassive black holes (SMBHs) with masses much too massive to be accounted for by the growth mechanisms observed in the local universe. Masses up to 10 10 M ⊙ up to z~7 seem to suggest some type of secular evolution or external influence to feed the earliest SMBHs at extremely high rates. Observations at such redshifts come at expensive technical cost and require significant dedicated space-telescope observing time. However, in the z~4 regime, SMBHs are still relatively young, exhibit extreme growth rates, and are economically accessible for both frequent shallow snapshots as well as deep observations. In this dissertation, the accretion mechanisms of z~4 quasars and the structure of their host galaxies and nearby companions are investigated to search for evolution over cosmic time as well as outside influence on star formation rates (SFRs) and SMBH growth. Building the longest available X-ray light curves of four representative radio-quiet quasars, X-ray variability is evaluated at timescales from days to years in the rest frame, and robust simulations allow both qualitative and quantitate measurements of variability to compare with samples at lower redshifts. At all timescales, X-ray variability is consistent with or …
Date: December 2022
Creator: Thomas, Marcus
System: The UNT Digital Library

Ultrasonic Wave Propagation and Localization in a Nonreciprocal Phononic Crystal

Ultrasonic wave propagation through a two-dimensional nonreciprocal phononic crystal with asymmetric aluminum rods in viscous water is studied for its application in Anderson localization and trapping of acoustic energy. A one-dimensional disorder in the otherwise 2D periodic crystal is introduced by disorienting the asymmetric rods along the rows and by keeping them equally oriented along the columns. An exponential decay of sound waves travelling along the direction of disorder is observed demonstrating Anderson localization whereas sound propagates as extended wave along the ordered direction. Localization length for the case of strong disorder with high randomness in the orientation of rods and weak disorder with weak fluctuations in the orientation of rods is evaluated. The degree of randomness in the orientation of the rods controls the localization length of the wave. Thouless's theoretical prediction for the scaling of Lyapunov exponent with disorder is experimentally observed for weak disorder at frequency in the transmission band and anomalous scaling is observed for band edge frequency. Transmission spectra of acoustic waves is also measured for opposite direction of propagation and nonreciprocity is observed for the exponentially weak transmission in the disordered direction as well as for extended states in the ordered direction. Breaking of …
Date: December 2022
Creator: Dhillon, Jyotsna
System: The UNT Digital Library
Towards Increased Precision of the 4He:23P1→23P2 Transition Measurement Using Laser Spectroscopy (open access)

Towards Increased Precision of the 4He:23P1→23P2 Transition Measurement Using Laser Spectroscopy

Significant sub-systems were created and others enhanced providing a platform for an order of magnitude precision increase of the small 4He interval - 23P1→23P2 laser spectroscopy measurement, as well as other helium transitions. These measurements serve as tests of helium theory and quantum electro-dynamics in general. Many improvements to the original experiment are discussed and characterized. In particular, counting speed increased 10x, the signal level was doubled, a novel Doppler shift minimization technique was implemented, a control node re-architecture was realized along with many useful features, and the development environment was updated. An initial 28% precision improvement was achieved also providing a foundation for additional gain via a created smaller and more heavily windowed vacuum cavity and picomotor controls.
Date: December 2021
Creator: Cameron, Garnet
System: The UNT Digital Library
Computational Techniques for Accelerated Materials Discovery (open access)

Computational Techniques for Accelerated Materials Discovery

Increasing ubiquity of computational resources has enabled simulation of complex electronic systems and modern materials. The PAOFLOW software package is a tool designed to construct and analyze tight binding Hamiltonians from the solutions of DFT calculations. PAOFLOW leverages localized basis sets to greatly reduce computational costs of post-processing QE simulation results, enabling efficient determination of properties such as electronic density, band structures in the presence of electric or magnetic fields, magnetic or spin circular dichroism, spin-texture, Fermi surfaces, spin or anomalous Hall conductivity (SHC or AHC), electronic transport, and more. PAOFLOW's broad functionality is detailed in this work, and several independent studies where PAOFLOW's capabilities directly enabled research on promising candidates for ferroelectric and spintronic based technologies are described. Today, Quantum computers are at the forefront of computational information science. Materials scientists and quantum chemists can use quantum computers to simulate interacting systems of fermions, without having to perform the iterative methods of classical computing. This dissertation also describes a study where the band structure for silicon is simulated for the first time on quantum hardware and broadens this concept for simulating band structures of generic crystalline structures on quantum machines.
Date: December 2021
Creator: Cerasoli, Franklin
System: The UNT Digital Library
Information and Self-Organization in Complex Networks (open access)

Information and Self-Organization in Complex Networks

Networks that self-organize in response to information are one of the most central studies in complex systems theory. A new time series analysis tool for studying self-organizing systems is developed and demonstrated. This method is applied to interacting complex swarms to explore the connection between information transport and group size, providing evidence for Dunbar's numbers having a foundation in network dynamics. A complex network model of information spread is developed. This network infodemic model uses reinforcement learning to simulate connection and opinion adaptation resulting from interaction between units. The model is applied to study polarized populations and echo chamber formation, exploring strategies for network resilience and weakening. The model is straightforward to extend to multilayer networks and networks generated from real world data. By unifying explanation and prediction, the network infodemic model offers a timely step toward understanding global collective behavior.
Date: December 2021
Creator: Culbreth, Garland
System: The UNT Digital Library

Manipulation of Light-Matter Interactions in Molybdenum Disulfide (MoS2) Monolayer through Dressed Phonons (DP) and Plasmons

Access: Use of this item is restricted to the UNT Community
The performance of electrical and optical devices based on two-dimensional semiconductors (2D) such as molybdenum disulfide is critically influenced due to very poor light absorption in the atomically thin layers. In this study, the phonon mediated optical absorption and emission properties in single atomic layers of MoS2 have been investigated. The electronic transitions in MoS2 due to near-field optical interaction and the influence of interface phonons due to the dielectric substrate GaN on the relaxation of optically generated carriers will be described. The near-field interaction can be induced in the presence of metal plasmons deposited on the surface of MoS2 monolayers. A hybrid metal-semiconductor system was realized by the deposition of silver (Ag) NPs on MoS2 layer and the localized plasmon modes were selectively chosen to interact with quasiparticles such as excitons and phonons. These quasiparticles are confined within the single atomic layer of MoS2 and are stable at room temperatures due to high binding energy. The lattice vibrational modes in MoS2 can be optically excited with the pulses from a femtosecond laser. These phonon modes can be optically dressed due to near-field interaction in the hybrid Ag-MoS2 system under an optical excitation resonant to localized plasmon modes. The coherent …
Date: December 2019
Creator: Poudel, Yuba R
System: The UNT Digital Library

PAOFLOW-Aided Computational Materials Design

Access: Use of this item is restricted to the UNT Community
Functional materials are essential to human welfare and to provide foundations for emerging industries. As an alternative route to experimental materials discovery, computational materials designs are playing an increasingly significant role in the whole discovery process. In this work, we use an in-house developed python utility: PAOFLOW, which generates finite basis Hamiltonians from the projection of first principles plane-wave pseudopotential wavefunctions on pseudo atomic orbitals(PAO) for post-process calculation on various properties such as the band structures, density of states, complex dielectric constants, diffusive and anomalous spin and charge transport coefficients. In particular, we calculated the dielectric function of Sr-, Pb-, and Bi-substituted BaSnO3 over wide concentration ranges. Together with some high-throughput experimental study, our result indicates the importance of considering the mixed-valence nature and clustering effects upon substitution of BaSnO3 with Pb and Bi. We also studied two prototype ferroelectric rashba semiconductors, GeTe and SnTe, and found the spin Hall conductivity(SHC) can be large either in ferroelectric or paraelectric structure phase. Upon doping, the polar displacements in GeTe can be sustained up to a critical hole concentration while the tiny distortions in SnTe vanish at a minimal level of doping. Moreover, we investigated the sensitivity of two dimensional group-IV monochalcogenides …
Date: December 2019
Creator: Wang, Haihang
System: The UNT Digital Library
Exploring Growth Kinematics and Tuning Optical and Electronic Properties of Indium Antimonide Nanowires (open access)

Exploring Growth Kinematics and Tuning Optical and Electronic Properties of Indium Antimonide Nanowires

This dissertation work is a study of the growth kinematics, synthesis strategies and intrinsic properties of InSb nanowires (NWs). The highlights of this work include a study of the effect of the growth parameters on the composition and crystallinity of NWs. A change in the temperature ramp-up rate as the substrate was heated to reach the NW growth temperature resulted in NWs that were either crystalline or amorphous. The as-grown NWs were found to have very different optical and electrical properties. The growth mechanism for crystalline NWs is the standard vapor-liquid-solid growth mechanism. This work proposes two possible growth mechanisms for amorphous NWs. The amorphous InSb NWs were found to be very sensitive to laser radiation and to heat treatment. Raman spectroscopy measurements on these NWs showed that intense laser light induced localized crystallization, most likely due to radiation induced annealing of defects in the region hit by the laser beam. Electron transport measurements revealed non-linear current-voltage characteristics that could not be explained by a Schottky diode behavior. Analysis of the experimental data showed that electrical conduction in this material is governed by space charge limited current (SCLC) in the high bias-field region and by Ohm's law in the low …
Date: December 2018
Creator: Algarni, Zaina Sluman
System: The UNT Digital Library
Electrically Tunable Absorption and Perfect Absorption Using Aluminum-Doped Zinc Oxide and Graphene Sandwiched in Oxides (open access)

Electrically Tunable Absorption and Perfect Absorption Using Aluminum-Doped Zinc Oxide and Graphene Sandwiched in Oxides

Understanding the fundamental physics in light absorption and perfect light absorption is vital for device applications in detector, sensor, solar energy harvesting and imaging. In this research study, a large area fabrication of Al-doped ZnO/Al2O3/graphene/Al2O3/gold/silicon device was enabled by a spin-processable hydrophilic mono-layer graphene oxide. In contrast to the optical properties of noble metals, which cannot be tuned or changed, the permittivity of transparent metal oxides, such as Al-doped ZnO and indium tin oxide, are tunable. Their optical properties can be adjusted via doping or tuned electrically through carrier accumulation and depletion, providing great advantages for designing tunable photonic devices or realizing perfect absorption. A significant shift of Raman frequency up to 360 cm-1 was observed from graphene in the fabricated device reported in this work. The absorption from the device was tunable with a negative voltage applied on the Al-doped ZnO side. The generated absorption change was sustainable when the voltage was off and erasable when a positive voltage was applied. The reflection change was explained by the Fermi level change in graphene. The sustainability of tuned optical property in graphene can lead to a design of device with less power consumption.
Date: December 2018
Creator: Adewole, Murthada Oladele
System: The UNT Digital Library
Quantum Coherence Effects Coupled via Plasmons (open access)

Quantum Coherence Effects Coupled via Plasmons

This thesis is an attempt at studying quantum coherence effects coupled via plasmons. After introducing the quantum coherence in atomic systems in Chapter 1, we utilize it in Chapter 2 to demonstrate a new technique of detection of motion of single atoms or irons inside an optical cavity. By taking into account the interaction of coherences with surface plasmonic waves excited in metal nanoparticles, we provide a theoretical model along with experimental data in Chapter 3 to describe the modification of Raman spectra near metal nanoparticles. We show in chapter 4 that starting from two emitters, coupled via a plasmonic field, the symmetry breaking occurs, making detectable the simultaneous existence of the fast super-radiance and the slow sub-radiance emission of dye fluorescence near a plasmonic surface. In Chapter 5, we study the photon statistics of a group of emitters coupled via plasmons and by the use of quantum regression theorem, we provide a theoretical model to fully investigate the dependence of photon bunching and anti-bunching effects to the interaction between atoms, fields and surrounding mediums.
Date: December 2018
Creator: Moazzezi, Mojtaba
System: The UNT Digital Library
Fabrication and Study of the Optical Properties of 3D Photonic Crystals and 2D Graded Photonic Super-Crystals (open access)

Fabrication and Study of the Optical Properties of 3D Photonic Crystals and 2D Graded Photonic Super-Crystals

In this dissertation, I am presenting my research on the fabrication and simulation of the optical properties of 3D photonic crystals and 2D graded photonic super-crystals. The 3D photonic crystals were fabricated using holographic lithography with a single, custom-built reflective optical element (ROE) and single exposure from a visible light laser. Fully 3D photonic crystals with 4-fold, 5- fold, and 6-fold symmetries were fabricated using the flexible, 3D printed ROE. In addition, novel 2D graded photonic super-crystals were fabricated using a spatial light modulator (SLM) in a 4f setup for pixel-by-pixel phase engineering. The SLM was used to control the phase and intensity of sets of beams to fabricate the 2D photonic crystals in a single exposure. The 2D photonic crystals integrate super-cell periodicities with 4-fold, 5-fold, and 6-fold symmetries and a graded fill fraction. The simulations of the 2D graded photonic super-crystals show extraordinary properties such as full photonic band gaps and cavity modes with Q-factors of ~106. This research could help in the development of organic light emitting diodes, high-efficiency solar cells, and other devices.
Date: December 2018
Creator: Lowell, David
System: The UNT Digital Library
Physical Boundary as a Source of Anomalies in Transport Processes in Acoustics and Electrodynamics (open access)

Physical Boundary as a Source of Anomalies in Transport Processes in Acoustics and Electrodynamics

Various anomalous effects that emerge when the interfaces between media are involved in sound-matter or light-matter interactions are studied. The three specific systems examined are a fluid channel between elastic metal plates, a linear chain of metallic perforated cylindrical shells in air, and a metal-dielectric slab with the interfaces treated as finite regions of smoothly changing material properties. The scattering of acoustic signals on the first two is predicted to be accompanied by the effects of redirection and splitting of sound. In the third system, which supports the propagation of surface plasmons, it is discovered that the transition region introduces a nonradiative decay mechanism which adds to the plasmon dissipation. The analytical results are supported with numerical simulations. The outlined phenomena provide the ideas and implications for applications involving manipulation of sound or excitation of surface plasmons.
Date: December 2018
Creator: Bozhko, Andrii
System: The UNT Digital Library
Core-Shell Based Metamaterials: Fabrication Protocol and Optical Properties (open access)

Core-Shell Based Metamaterials: Fabrication Protocol and Optical Properties

The objective of this study is to examine core-shell type plasmonic metamaterials aimed at the development of materials with unique electromagnetic properties. The building blocks of metamaterials under study consist of gold as a metal component, and silica and precipitated calcium carbonate (PCC) as the dielectric media. The results of this study demonstrate important applications of the core-shells including scattering suppression, airborne obscurants made of fractal gold shells, photomodification of the fractal structure providing windows of transparency, and plasmonics core-shell with a gain shell as an active device. Plasmonic resonances of the metallic shells depend on their nanostructure and geometry of the core, which can be optimized for the broadband extinction. Significant extinction from the visible to mid-infrared makes fractal shells very attractive as bandpass filters and aerosolized obscurants. In contrast to the planar fractal films, where the absorption and reflection equally contribute to the extinction, the shells' extinction is caused mainly by the absorption. This work shows that the Mie scattering resonance of a silica core with 780 nm diameter at 560 nm is suppressed by 75% and only partially substituted by the absorption in the shell so that the total transmission is noticeably increased. Effective medium theory supports …
Date: December 2017
Creator: De Silva, Vashista C
System: The UNT Digital Library
Design, Construction, and Application of an Electrostatic Quadrupole Doublet for Heavy Ion Nuclear Microprobe Research (open access)

Design, Construction, and Application of an Electrostatic Quadrupole Doublet for Heavy Ion Nuclear Microprobe Research

A nuclear microprobe, typically consisting of 2 - 4 quadrupole magnetic lenses and apertures serving as objective and a collimating divergence slits, focuses MeV ions to approximately 1 x 1 μm for modification and analysis of materials. Although far less utilized, electrostatic quadrupole fields similarly afford strong focusing of ions and have the added benefit of doing so independent of ion mass. Instead, electrostatic quadrupole focusing exhibits energy dependence on focusing ions. A heavy ion microprobe could extend the spatial resolution of conventional microprobe techniques to masses untenable by quadrupole magnetic fields. An electrostatic quadrupole doublet focusing system has been designed and constructed using several non-conventional methods and materials for a wide range of microprobe applications. The system was modeled using the software package "Propagate Rays and Aberrations by Matrices" which quantifies system specific parameters such as demagnification and intrinsic aberrations. Direct experimental verification was obtained for several of the parameters associated with the system. Details of the project and with specific applications of the system are presented.
Date: December 2017
Creator: Manuel, Jack Elliot
System: The UNT Digital Library
Local Phase Manipulation for Multi-Beam Interference Lithography for the Fabrication of Two and Three Dimensional Photonic Crystal Templates (open access)

Local Phase Manipulation for Multi-Beam Interference Lithography for the Fabrication of Two and Three Dimensional Photonic Crystal Templates

In this work, we study the use of a spatial light modulator (SLM) for local manipulation of phase in interfering laser beams to fabricate photonic crystal templates with embedded, engineered defects. A SLM displaying geometric phase patterns was used as a digitally programmable phase mask to fabricate 4-fold and 6-fold symmetric photonic crystal templates. Through pixel-by-pixel phase engineering, digital control of the phases of one or more of the interfering beams was demonstrated, thus allowing change in the interference pattern. The phases of the generated beams were programmed at specific locations, resulting in defect structures in the fabricated photonic lattices such as missing lattice line defects, and single-motif lattice defects in dual-motif lattice background. The diffraction efficiency from the phase pattern was used to locally modify the filling fraction in holographically fabricated structures, resulting in defects with a different fill fraction than the bulk lattice. Through two steps of phase engineering, a spatially variant lattice defect with a 90° bend in a periodic bulk lattice was fabricated. Finally, by reducing the relative phase shift of the defect line and utilizing the different diffraction efficiency between the defect line and the background phase pattern, desired and functional defect lattices can be …
Date: December 2016
Creator: Lutkenhaus, Jeffrey Ryan
System: The UNT Digital Library
Low-Energy Electron Irradiation of Preheated and Gas-Exposed Single-Wall Carbon Nanotubes (open access)

Low-Energy Electron Irradiation of Preheated and Gas-Exposed Single-Wall Carbon Nanotubes

We investigate the conditions under which electron irradiation of single-walled carbon nanotube (SWCNT) bundles with 2 keV electrons produces an increase in the Raman D peak. We find that an increase in the D peak does not occur when SWCNTs are preheated in situ at 600 C for 1 h in ultrahigh vacuum (UHV) before irradiation is performed. Exposing SWCNTs to air or other gases after preheating in UHV and before irradiation results in an increase in the D peak. Small diameter SWCNTs that are not preheated or preheated and exposed to air show a significant increase in the D and G bands after irradiation. X-ray photoelectron spectroscopy shows no chemical shifts in the C1s peak of SWCNTs that have been irradiated versus SWCNTs that have not been irradiated, suggesting that the increase in the D peak is not due to chemisorption of adsorbates on the nanotubes.
Date: December 2016
Creator: Ecton, Philip
System: The UNT Digital Library
Ion Beam Synthesis of Binary and Ternary Transition Metal Silicide Thin Films (open access)

Ion Beam Synthesis of Binary and Ternary Transition Metal Silicide Thin Films

Among the well-known methods to form or modify the composition and physical properties of thin films, ion implantation has shown to be a very powerful technique. In particular, ion beam syntheses of binary iron silicide have been studied by several groups. Further, the interests in transition metal silicide systems are triggered by their potential use in advanced silicon based opto-electronic devices. In addition, ternary silicides have been by far less studied than their binary counterparts despite the fact that they have interesting magnetic and electronic properties. In this study, we investigate ion beam synthesis of Fe-Si binary structures and Fe-Co-Si ternary structures. This work involves fundamental investigation into development of a scalable synthesis process involving binary and ternary transitional metal silicide thin films and Nano-structures using low energy ion beams. Binary structures were synthesized by implanting Fe- at 50 keV energy. Since ion implantation is a dynamic process, Dynamic simulation techniques were used in these studies to determine saturation fluences for ion implantation. Also, static and dynamic simulation results were compared with experimental results. The outcome of simulations and experimental results indicate, dynamic simulation codes are more suitable than static version of the TRIM to simulate high fluence, low energy …
Date: December 2016
Creator: Lakshantha, Wickramaarachchige Jayampath
System: The UNT Digital Library
Ultrasensitive Technique for Measurement of Two-Photon Absorption (open access)

Ultrasensitive Technique for Measurement of Two-Photon Absorption

Intensive demands have arisen to characterize nonlinear optical properties of materials for applications involving optical limiters, waveguide switches and bistable light switches. The technique of Pulse Delay Modulation is described which can monitor nonlinear changes in transmission with shot noise limited signal-to-noise ratios even in the presence of large background signals. The theoretical foundations of the experiment are presented followed by actual measurements of beam depletion due to second harmonic generation in a LiIO3 crystal and two-photon absorption in the semiconductor ZnSe. Sensitivity to polarization rotation arising from the Kerr Effect in carbon disulfide, saturable absorber relaxation in modelocking dyes and photorefractive effects in ZnSe are demonstrated. The sensitivity of Pulse Delay Modulation is combined with Fabry-Perot enhancement to allow the measurement of two-photon absorption in a 0.46pm thick interference filter spacer layer. Also included is a study of nonlinear optical limiting arising from dielectric breakdown in gases.
Date: December 1991
Creator: Miller, Steven A. (Steven Alan)
System: The UNT Digital Library
Investigation of the Effects of Compressive Uniaxial Stress on the Hole Carriers in P-type InSb (open access)

Investigation of the Effects of Compressive Uniaxial Stress on the Hole Carriers in P-type InSb

The influence of uniaxial compression upon the Hall effect ad resistivity of cadmium-doped samples of InSb at 77 K, 64 K, and 12 K are reported. Unilaxial compressions as high as 6 kbar were applied to samples oriented in the {001} and {110} directions. The net hole concentration of the samples were about 5x10^13 cm^-3 at 77 K as determined from the Hall coefficient at 24 kilogauss. The net concentration of hole carriers decreases and then increases exponentially with stress at 77 k and 64 k, while at 12 k there is only a monotonic increase of carrier concentration with stress. Analysis of the hole concentration as a function of stress shows the presence of a deep acceptor level located about 90 meV above the valence band edge in additionb to the 10 meV vadmium acceptor level. The shallow acceptor level does not split with stress. The hole density data is represented very well by models which describe both the variation in the net density of states and motion of the acceptor levels as a function of stress.
Date: December 1975
Creator: Vaughn, Bobby J.
System: The UNT Digital Library
Fractional Calculus and Dynamic Approach to Complexity (open access)

Fractional Calculus and Dynamic Approach to Complexity

Fractional calculus enables the possibility of using real number powers or complex number powers of the differentiation operator. The fundamental connection between fractional calculus and subordination processes is explored and affords a physical interpretation for a fractional trajectory, that being an average over an ensemble of stochastic trajectories. With an ensemble average perspective, the explanation of the behavior of fractional chaotic systems changes dramatically. Before now what has been interpreted as intrinsic friction is actually a form of non-Markovian dissipation that automatically arises from adopting the fractional calculus, is shown to be a manifestation of decorrelations between trajectories. Nonlinear Langevin equation describes the mean field of a finite size complex network at criticality. Critical phenomena and temporal complexity are two very important issues of modern nonlinear dynamics and the link between them found by the author can significantly improve the understanding behavior of dynamical systems at criticality. The subject of temporal complexity addresses the challenging and especially helpful in addressing fundamental physical science issues beyond the limits of reductionism.
Date: December 2015
Creator: Beig, Mirza Tanweer Ahmad
System: The UNT Digital Library
Nonlinear and Quantum Optics Near Nanoparticles (open access)

Nonlinear and Quantum Optics Near Nanoparticles

We study the behavior of electric fields in and around dielectric and metal nanoparticles, and prepare the ground for their applications to a variety of systems viz. photovoltaics, imaging and detection techniques, and molecular spectroscopy. We exploit the property of nanoparticles being able to focus the radiation field into small regions and study some of the interesting nonlinear, and quantum coherence and interference phenomena near them. The traditional approach to study the nonlinear light-matter interactions involves the use of the slowly varying amplitude approximation (SVAA) as it simplifies the theoretical analysis. However, SVVA cannot be used for systems which are of the order of the wavelength of the light. We use the exact solutions of the Maxwell's equations to obtain the fields created due to metal and dielectric nanoparticles, and study nonlinear and quantum optical phenomena near these nanoparticles. We begin with the theoretical description of the electromagnetic fields created due to the nonlinear wavemixing process, namely, second-order nonlinearity in an nonlinear sphere. The phase-matching condition has been revisited in such particles and we found that it is not satisfied in the sphere. We have suggested a way to obtain optimal conditions for any type and size of material medium. …
Date: December 2015
Creator: Dhayal, Suman
System: The UNT Digital Library