I: Low Frequency NMR and NQR Using a dc SQUID. II: Variable-temperature 13C CP/MAS of Organometallics (open access)

I: Low Frequency NMR and NQR Using a dc SQUID. II: Variable-temperature 13C CP/MAS of Organometallics

NMR and NQR at low frequencies are difficult prospects due to small nuclear spin polarization. Furthermore, the sensitivity'of the inductive pickup circuitry of standard spectrometers is reduced as the frequency is lowered. I have used a cw-SQUID (Superconducting QUantum Interference Device) spectrometer, which has no such frequency dependence, to study the local atomic environment of {sup 14}N via the quadrupolar interaction. Because {sup 14}N has spin I = 1 and a 0-6 MHz frequency range, it is not possible to obtain well-resolved spectra in high magnetic fields. I have used a technique to observe {sup 14}N NQR resonances via their effect on neighboring protons mediated by the heteronuclear dipolar interaction to study peptides and narcotics. The sensitivity of the SQUID is not enough to measure low-frequency surface (or other low spin density) systems. The application of spin-polarized xenon has been previously used to enhance polarization in conventional NMR experiments. Because xenon only polarizes spins with which it is in contact, it is surface selective. While differences in chemical shifts between surface and bulk spins are not large, it is expected that the differences in quadrupole coupling constant should be very large due to the drastic change of the electric field …
Date: November 29, 1995
Creator: Ziegeweid, M.A.
System: The UNT Digital Library
High-Resolution NMR of Quadrupolar Nuclei in the Solid State (open access)

High-Resolution NMR of Quadrupolar Nuclei in the Solid State

This dissertation describes recent developments in solid state nuclear magnetic resonance (NMR), for the most part involving the use of dynamic-angle spinning (DAS) NMR to study quadrupolar nuclei. Chapter 1 introduces some of the basic concepts and theory that will be referred to in later chapters, such as the density operator, product operators, rotations, coherence transfer pathways, phase cycling, and the various nuclear spin interactions, including the quadrupolar interaction. Chapter 2 describes the theory behind motional averaging experiments, including DAS, which is a technique where a sample is spun sequentially about two axis oriented at different angles with respect to the external magnetic field such that the chemical shift and quadrupolar anisotropy are averaged to zero. Work done on various rubidium-87 salts is presented as a demonstration of DAS. Chapter 3 explains how to remove sidebands from DAS and magic-angle spinning (MAS) experiments, which result from the time-dependence of the Hamiltonian under sample spinning conditions, using rotor-synchronized {pi}-pulses. Data from these experiments, known as DAH-180 and MAH-180, respectively, are presented for both rubidium and lead salts. In addition, the applicability of this technique to double rotation (DOR) experiments is discussed. Chapter 4 concerns the addition of cross-polarization to DAS (CPDAS). …
Date: November 30, 1995
Creator: Gann, Sheryl Lee
System: The UNT Digital Library
The influence of ambient medium density on laser ablation processes (open access)

The influence of ambient medium density on laser ablation processes

Interest in high flux transport processes has grown in recent years along with the ability and need to manipulate systems with microscopic length and time scales. These systems present unique engineering challenges. Because the time and length scales associated with these problems are very small, assumptions of local equilibrium, physical and mathematical smoothness of boundaries and the unambiguous definition of thermodynamic fields can not be automatically made, even though they may ultimately be acceptable. Furthermore, the observations are made on macroscopic or integrated scales. The large difference in scales between the temporal evolution of the process and the observation requires careful consideration of the claims made regarding the system`s microscopic, temporal behavior. In particular, consistency of a proposed model with observed results does not guarantee uniqueness, or predictive accuracy for the model. For these reasons, microscale heat transfer systems demand a careful consideration of the framework within which the experimentation and analysis are conducted.
Date: November 1, 1995
Creator: Kilgo, M.M. III
System: The UNT Digital Library
Synthesis, characterization and physical properties of Al-Cu-Fe quasicrystalline plasma sprayed coatings (open access)

Synthesis, characterization and physical properties of Al-Cu-Fe quasicrystalline plasma sprayed coatings

Our lab has been working with plasma spraying of both high pressure gas atomized (HPGA) and cast and crushed quasicrystal powders. A major component of this research includes comparative studies of PAS coatings formed with starting powders prepared by both techniques. In addition, a thorough investigation of the effects of starting powder particle size on coating microstructure is included. During the course of the overall research, an interest developed in forming Al-Cu-Fe materials with finer grain sizes. Therefore, a brief study was performed to characterize the effect of adding boron to Al-Cu-Fe materials prepared by different techniques. In addition to characterizing the microstructural features of the above materials, oxidation and wear behavior was also examined.
Date: November 9, 1995
Creator: Daniel, S.
System: The UNT Digital Library
Application of the Environmental Protection Agency`s data quality objective process to environmental monitoring quality control (open access)

Application of the Environmental Protection Agency`s data quality objective process to environmental monitoring quality control

The United States Environmental Protection Agency`s (EPA) Data Quality Objectives (DQO) process was applied to two environmental monitoring networks for the purpose of optimizing field quality control sampling to give the highest quality monitoring data with minimal impact on resources. The DQO process, developed primarily to aid in cleanup and restoration activities, is a systematic approach to designing sampling, and analysis programs with improved efficiency, cost savings, and measureable and traceable data quality. The two monitoring- networks studied had not been subjected to the systematic review and analysis of the DQO process defined by the EPA. The two monitoring networks studied had relied upon field duplicates or replicates as the main source of field quality control data. Sometimes, both duplicate and routine sample were analyzed by the same analytical laboratory; at other times they were analyzed by different laboratories. This study identified some potential inconsistencies between analytical data and reporting limits from two different laboratories. Application of the EPA DQO process resulted in recommendations for changes in the field quality control sampling program, allowed new insight into the monitoring data, and raised several issues that should be the subject of further investigation.
Date: November 1, 1995
Creator: Garcia, L.M.
System: The UNT Digital Library
Measurement of the polarized forward-backward asymmetry of B quarks using momentum-weighted track charge at SLD (open access)

Measurement of the polarized forward-backward asymmetry of B quarks using momentum-weighted track charge at SLD

This thesis presents a direct measurement of the parity-violating parameter A{sub b} by analyzing the polarized forward-backward asymmetry of b quarks in e{sup +}e{sup {minus}} {yields} Z{sup 0} {yields} b{bar b}. Data were taken at the Stanford Linear Accelerator Center (SLAC), with the Stanford Large Detector (SLD), which records the products of e{sup +}e{sup {minus}} interactions at a center of mass energy {radical}s = 91.2 GeV/c{sup 2} at the SLAC Linear Collider (SLC). The SLC/SLD experimental apparatus provides a unique and ideal environment for measuring electroweak asymmetries. Heavy flavor decays of the Z{sup 0} were identified inclusively by taking advantage of the long lifetime of B hadrons, the small, stable SLC beam spot, and SLD`s precise tracking detectors. Two analysis techniques for measuring A{sub b} are presented: a binned fit to the left-right forward-backwards asymmetry of tagged events signed with momentum-weighted track charge, and a self-calibrating maximum-likelihood technique using momentum-weighted charge from the two hemispheres in each tagged event. From our 1994-1995 sample of 3.6 pb{sup {minus}1}, having a luminosity-weighted average e{sup {minus}} polarization of 77.3%, and our 1993 sample of 1.8 pb{sup {minus}1}, having a luminosity-weighted polarization of 63.1%, we obtain A{sub b} = 0.848 {plus_minus} 0.046(stat.) {plus_minus} 0.050(syst.).
Date: November 1, 1995
Creator: Junk, T.R.
System: The UNT Digital Library
Connection between NMR and electrical conductivity in glassy chalcogenide fast ionic conductors (open access)

Connection between NMR and electrical conductivity in glassy chalcogenide fast ionic conductors

The work documented in this thesis follows the traditional order. In this chapter a general discussion of ionic conduction and of glassy materials are followed by a brief outline of the experimental techniques for the investigation of fast ionic conduction in glassy materials, including NMR and impedance spectroscopy techniques. A summary of the previous and present studies is presented in the last section of this introductory chapter. The details of the background theory and models are found in the Chapter II, followed by the description of the experimental details in Chapter III. Chapter IV of the thesis describes the experimental results and the analysis of the experimental observations followed by the conclusions in chapter V.
Date: November 1, 1995
Creator: Kim, K. H.
System: The UNT Digital Library
Anisotropic superconducting and normal state magnetic properties of single crystals of RNi*2*B*2*C compounds (R = Y, Gd, Dy, Ho, Er, and Tm) (open access)

Anisotropic superconducting and normal state magnetic properties of single crystals of RNi*2*B*2*C compounds (R = Y, Gd, Dy, Ho, Er, and Tm)

The interaction of superconductivity with magnetism has been one of the most interesting and important phenomena in solid state physics since the 1950`s when small amounts of magnetic impurities were incorporated in superconductors. The discovery of the magnetic superconductors RNi{sub 2}B{sub 2}C (R = rare earth, Y) offers a new system to study this interaction. The wide ranges of superconducting transition (T{sub c}) and antiferromagnetic (AF) ordering temperatures (T{sub N}) (0 K {le} T{sub c} {le} 16 K, 0 K {le} T{sub N} {le} 20 K) give a good opportunity to observe a variety of interesting phenomena. Single crystals of high quality with appropriate size and mass are crucial in examining the anisotropic intrinsic properties. Single crystals have been grown successfully by an unusual high temperature flux method and characterized thoroughly by X-ray, electrical transport, magnetization, neutron scattering, scanning electron microscopy, and other measurements.
Date: November 1, 1995
Creator: Cho, B.
System: The UNT Digital Library
The dynamics of variable-density turbulence (open access)

The dynamics of variable-density turbulence

The dynamics of variable-density turbulent fluids are studied by direct numerical simulation. The flow is incompressible so that acoustic waves are decoupled from the problem, and implying that density is not a thermodynamic variable. Changes in density occur due to molecular mixing. The velocity field is, in general, divergent. A pseudo-spectral numerical technique is used to solve the equations of motion. Three-dimensional simulations are performed using a grid size of 128{sup 3} grid points. Two types of problems are studied: (1) the decay of isotropic, variable-density turbulence, and (2) buoyancy-generated turbulence in a fluid with large density fluctuations (such that the Boussinesq approximation is not valid). In the case of isotropic, variable-density turbulence, the overall statistical decay behavior, for the cases studied, is relatively unaffected by the presence of density variations when the initial density and velocity fields are statistically independent. The results for this case are in quantitative agreement with previous numerical and laboratory results. In this case, the initial density field has a bimodal probability density function (pdf) which evolves in time towards a Gaussian distribution. The pdf of the density field is symmetric about its mean value throughout its evolution. If the initial velocity and density fields …
Date: November 1, 1995
Creator: Sandoval, D.L.
System: The UNT Digital Library
Oxidation studies on small atom doped TI*5*SI*3* (open access)

Oxidation studies on small atom doped TI*5*SI*3*

This report described the oxidation and oxidation resistance of Ti{sub 5}Si{sub 3}, along with a discussion on general material properties. Single crystal studies of Ti{sub 5}Si{sub 3}Z{sub x} are included.
Date: November 1, 1995
Creator: unknown
System: The UNT Digital Library
Applications of capillary electrophoresis and laser-induced fluorescence detection to the analysis of trace species: From single cells to single molecules (open access)

Applications of capillary electrophoresis and laser-induced fluorescence detection to the analysis of trace species: From single cells to single molecules

This Ph.D. Thesis describes several separation and detection schemes for the analysis of small volume and amount of samples, such as intracellular components and single enzymes developed during research. Indirect Laser-induced fluorescence detection and capillary electrophoresis were used to quantify lactate and pyruvate in single red blood cells. The assay of specific enzyme activities was achieved by monitoring the highly fluorescent enzymatic reaction product, NADH. LDH activity was found not to be a unique marker for diagnosis of leukemia. Reactions of single LDH-1 molecules were investigated by monitoring the reaction product with LIF detection.
Date: November 1, 1995
Creator: Qifeng, X.
System: The UNT Digital Library
Dynamical studies of periodic and disordered systems (open access)

Dynamical studies of periodic and disordered systems

The time evolution of two classes of systems is studied with real time molecular dynamics simulations. The first consists of a coupled electron-lattice system. For a periodic system, we present results for the time evolution of a one-dimensional system consisting of an electron, described by a tight-binding Hamiltonian, and a harmonic lattice, coupled by a deformation-type potential. We solve numerically the nonlinear system of equations of motion for this model in order to study the effects of varying the electronic effective mass for several initial conditions and coupling strengths. A large effective mass favors localized polaron formation for initially localized electrons. For initially extended electronic states, increasing the effective mass of an electron initially close to the bottom of the band makes localization more difficult, while for an initially highly excited electronlocalized polaron formation is possible only when the electronic effective mass and the atomic masses of the lattice become of the same order.
Date: November 1, 1995
Creator: Kopidakis, G.
System: The UNT Digital Library
Microstructural development of rapid solidification in Al-Si powder (open access)

Microstructural development of rapid solidification in Al-Si powder

The microstructure and the gradient of microstructure that forms in rapidly solidificated powder were investigated for different sized particles. High pressure gas atomization solidification process has been used to produce a series of Al-Si alloys powders between 0.2 {mu}m to 150 {mu}m diameter at the eutectic composition (12.6 wt pct Si). This processing technique provides powders of different sizes which solidify under different conditions (i.e. interface velocity and interface undercooling), and thus give different microstructures inside the powders. The large size powder shows dendritic and eutectic microstructures. As the powder size becomes smaller, the predominant morphology changes from eutectic to dendritic to cellular. Microstructures were quantitatively characterized by using optical microscope and SEM techniques. The variation in eutectic spacing within the powders were measured and compared with the theoretical model to obtain interface undercooling, and growth rate during the solidification of a given droplet. Also, nucleation temperature, which controls microstructures in rapidly solidified fine powders, was estimated. A microstructural map which correlates the microstructure with particle size and processing parameters is developed.
Date: November 1, 1995
Creator: Jin, F.
System: The UNT Digital Library
A study of Ag/Ag(100) thin film growth with scanning tunneling microscopy (open access)

A study of Ag/Ag(100) thin film growth with scanning tunneling microscopy

Thin films are attracting more and more attention in both the industrial and scientific communities. Many applications of thin films have been developed in industry. By using various growth methods, thin films can be used in optics, microelectronic devices, magnetic recording media, and as protective coatings. In order to improve existing applications and to find new ones, it is essential to understand what makes them so useful in applications and what factors affect their properties. Therefore, an understanding of film growth processes is necessary. Scientifically, many fundamental interactions, such as the interaction between the atoms that comprise the film and substrate, or the interaction between film atoms, are of great interest to surface scientists; studies of these interactions can provide dramatic insights into the nature of thin films and therefore, can further drive technology forward. In every application, the film structures, including morphology and microstructure, and adhesion between film and substrate are critical to the film`s properties and therefore its performance. Studies of the mechanisms that control film morphology, microstructure and adhesion thus are important. Film growth kinetics can provide important information regarding the film structure and adhesion. Film growth is an atomistic process. The chemistry and physics of the …
Date: November 1, 1995
Creator: Wen, J.
System: The UNT Digital Library
Excited state proton transfer in 9-aminoacridine carboxamides in water and in DNA (open access)

Excited state proton transfer in 9-aminoacridine carboxamides in water and in DNA

The 9-aminoacridine molecule is important in several different fields of chemistry. The absorption and fluorescence spectra of this compound are pH sensitive and it is this property that allowed it to be used as a pH probe in different chemical environments. The compound exhibits proton transfer reactions which are among the most fundamental of chemical reactions. The planarity of 9-aminoacridine allows it to intercalate into DNA. Intercalation is a process in which the aromatic flat surface of the intercalator inserts between adjacent base pairs of DNA. The large surface area of 9-aminoacridine`s fused tricyclic ring system allows strong intercalative binding through van der Waals attractions. 9-aminoacridine and many of its derivatives have been tried as possible antitumor drugs. The cytotoxicity of an antitumor agent can be dramatically increased through the addition of one or two cationic side chains. This increase in cytotoxicity using the 9-aminoacridine compound as a parent molecule has been investigated through various derivatives with cationic side chains consisting of different number of carbon atoms between the proximal and distal N atoms. Similar derivatives varied the position of the carboxamide side chain on the aromatic ring system. The objective of this work is to first create a baseline …
Date: November 1, 1995
Creator: Smith, C. A.
System: The UNT Digital Library
Spectral hole burning studies of photosystem II (open access)

Spectral hole burning studies of photosystem II

Low temperature absorption and hole burning spectroscopies were applied to the D1-D2-cyt b{sub 559} and the CP47 and CP43 antenna protein complexes of Photosystem H from higher plants. Low temperature transient and persistent hole-burning data and theoretical calculations on the kinetics and temperature dependence of the P680 hole profile are presented and provide convincing support for the linker model. Implicit in the linker model is that the 684-nm-absorbing Chl a serve to shuttle energy from the proximal antenna complex to reaction center. The stoichiometry of isolated Photosystem H Reaction Center (PSII RC) in several different preparations is also discussed. The additional Chl a are due to 684-nm-absorbing Chl a, some contamination by the CP47 complex, and non-native Chl a absorbing near 670 nm. In the CP47 protein complex, attention is focused on the lower energy chlorophyll a Q{sub y}-states. High pressure hole-burning studies of PSII RC revealed for the first time a strong pressure effect on the primary electron transfer dynamics. The 4.2 K lifetime of P680*, the primary donor state, increases from 2.0 ps to 7.0 ps as pressure increases from 0.1 to 267 MPa. Importantly, this effect is irreversible (plastic) while the pressure induced effect on the low …
Date: November 1, 1995
Creator: Chang, H.C.
System: The UNT Digital Library
Effect of a fluorinated nickel surface on the decomposition of perfluorodiethoxymethane (open access)

Effect of a fluorinated nickel surface on the decomposition of perfluorodiethoxymethane

Perfluoropolyethers (PFPEs) are a commercial class of lubricants widely used in computer and aerospace industries. This is a study of the degradation of a perfluorinated ether in the presence of a metal fluoride. Perfluorodiethoxymethane (PFDEM) is a PFPE analog. Temperature programmed desorption shows no contribution of PFDEM toward nickel fluoride on an NiF{sub 2} surface obtained by CF{sub 3}I adsorption. Higher coverages of nickel fluoride do not show any evidence of NiF{sub 2} contribution from PFDEM. The results do not agree with the idea that a fluorinated surface might induce decomposition of PFPEs, leading to addition fluoride formation on the surface. The metal fluoride bond strength is not a legitimate concern for decomposition of PFE lubricants. Impurity in PFPEs might be the cause of initial surface fluoridation leading to breakdown of PFPEs which could cause additional metal fluoride formation. It is clear that the reaction of PFPEs with metals does not involve a direct formation of a simple M-F bond; results do not show any C-F bond cleavage of the fluorinated ether and do not support a proposed autocatalytic mechanism.
Date: November 9, 1995
Creator: Sreevidya, S.
System: The UNT Digital Library
Organic transformations catalyzed by methylrhenium trioxide (open access)

Organic transformations catalyzed by methylrhenium trioxide

Methylrhenium trioxide (MTO), CH{sub 3}ReO{sub 3}, was first prepared in 1979. MTO forms stable or unstable adducts with electron-rich ligands, such as amines (quinuclidine, 1,4-diazabicyclo-octane, pyridine, aniline, 2,2{prime}-bipyridine), alkynes, olefins, 1,2-diols, catechols, hydrogen peroxide, water, thiophenols, 1,2-dithiols, triphenylphosphine, 2-aminophenols, 2-aminothiophenols, 8-hydroxyquinoline and halides (Cl-, Br-, I-). After coordination, different further reactions will occur for different reagents. Reactions described in this report include the dehydration of alcohols, direct amination of alcohols, activation of hydrogen peroxide, oxygen transfer, and decomposition of ethyl diazoacetate.
Date: November 1, 1995
Creator: Zhu, Z.
System: The UNT Digital Library